在写教案时先明确教学目标十分必要,然后列出教学程序,依据实际的教学能力和教学内容所写的教案才是有价值的,66范文网小编今天就为您带来了人教版小学六年级上册数学教案优秀6篇,相信一定会对你有所帮助。
人教版小学六年级上册数学教案篇1
?教学目标】
1.在现实情境中初步认识负数和理解负数的意义,了解负数的产生与作用,感受负数使用带来的方便。
2.会正确地读、写正、负数,知道0既不是正数,也不是负数。
3.使学生体验数学和生活的密切联系,激发学生学习数学的兴趣,培养学生应用数学的意识。
?教学重点】
负数的意义和负数的读法与写法。
?教学难点】
理解0既不是正数,也不是负数。
?教学过程】
一、激发兴趣,导入新课
游戏:《我变,我变,我变变变》
老师说一句话,请同学们说出一句和它意思相反的话。
二、创设情境、学习新知
1.教学例1。
(1)课件出示:中央电视台天气预报的一个场面:哈尔滨零下6摄氏度至3摄氏度。
你能用自己的方法来表示这两个温度吗?
学生思考后反馈,教师适时点拨、评价和引导。
教师小结:
(2)巩固练习。
同学们,你能用刚才我们学过的知识,用恰当的数来表示温度吗?试试看。
学生独立完成第123页下图的练习。
教师巡视,个别辅导,集体订正写得是否正确,并让学生齐读。
2.自主学习例2。
教师:同学们,你们知道吗?世界第一高峰——珠穆朗玛峰从山脚到山顶,气温相差很大,这是和它的海拔高度有关的。今天,老师带来了一张珠穆朗玛峰的海拔图,请看。(课件演示珠穆朗玛峰的海拔图,课本第124页上图的左部分,数字前没有符号)从图上你看懂了些什么?
引导学生交流:珠穆朗玛峰比海平面高8844.43米。
我们再来看新疆的吐鲁番盆地的海拔图。(课件演示吐鲁番盆地的海拔情况,课本第124页上图的右部分,数字前没有符号)你又能从图上看懂些什么呢?
引导学生交流:吐鲁番盆地比海平面低155米。
教师小结:珠穆朗玛峰比海平面高,吐鲁番盆地比海平面低。大家再想想:你能用一种简单的方法来记录一下这两个地方的海拔高度吗?
学生交流:珠穆朗玛峰的海拔可以记作:+8844.43米或8844.43米。吐鲁番盆地的海拔可以记作:-155米。(板书)
教师追问:你是怎么想到用这种方法来记录的呢?
教师小结:以海平面为界线,+8844.43米或8844.43米这样的数表示比海平面高8844.43米;-155米这样的数表示比海平面低155米。
(2)巩固练习:课本第124页试一试。
教师巡视,集体订正。
3.小组讨论,归纳正数和负数。
教师:通过刚才的学习,我们收集到了一些数据,(课件显示)我们可以用这些数来表示零上温度和零下温度,还可以表示海平面以上的高度和海平面以下的高度。那么,你们观察一下这些数,它们一样吗?它们可以怎样分类呢?
学生交流、讨论。
指出:因为+8844.43米也可以写成8844.43米,所以有正号和没正号都可以归于一类。
提出疑问:0到底归于哪一类?引导学生争论,各自发表意见。
小结:(结合图)我们从温度计上观察,以0℃为界限线,0℃以上的温度用正几表示,0℃以下的温度用负几表示。同样,以海平面为界线,高于海平面的高度我们用正几来表示,低于海平面我们用负几表示。0就像一条分界线,把正数和负数分开了,它谁都不属于。但对于正数和负数来说,它却必不可少。我们把像+6、 3、+8844.43等这样的数叫做正数;像-6、-155等这样的数叫做负数;而0既不是正数,也不是负数。(板书)
通常正号可以省略不写,负号可以不写吗? 为什么?
三、巩固练习,深化认识
1.课堂活动:1、2题。
①读一读,议一议。
学生齐读,巩固负数的读法。
②根据题中的信息,说一说三个班的答题情况。
学生讨论交流,并说出理由。
2.练习二十五:1、3题。
独立练习,反馈交流。
四、联系生活,拓展运用
说一说:生活中哪些地方还会用到负数。
人教版小学六年级上册数学教案篇2
一、教材分析
首先我对本节教材内容进行如下分析:
本节课的教学设计力图体现“尊重学生,注重发展”,强调以学生为主体的学习活动对学生理解数学的重要性,本节教学内容分数除法中的解决问题,问题情境的数量关系表现为已知一个数的几分之几是多少,要求这个数,这样的的实际问题,与上一单元求一个数的几分之几是多少的实际问题,具有紧密的内在联系,即数量关系相同,区别在于已知数与未知数交换了位置,因此我有意识地采用多种活动方式,让学生理解知识的产生和发展的过程,尝到发现数学的滋味
二、学情分析:
我跟班上来的,对我班学生也比较了解,我班有47名学生,人数比较多,对数学知识的学习两极分化比较严重,大部分学生对数学学习有着浓厚的兴趣,但也有一部分学生与其他学生差异较大,对数学学习缺乏信心,积极思考的习惯有待于培养。因此在本节教学中,我关注更多的是用学生已有的知识经验激发学生的兴趣。
三、教学目标:
1、使学生学会掌握“已知一个数的几分之几是多少,求这个数”的应用题的解答方法,能熟练地列方程解答这类应用题。
2、进一步培养学生自主探索问题解决的能力和分析、推理和判断等思维能力,提高解答应用题的能力。
人教版小学六年级上册数学教案篇3
教学目标:
1.利用正比例解决一些简单的生活问题,感受正比例关系在生活中的广泛应用。
2.能根据正比例的意义,判断两个相关联的量是不是成正比例。
3.结合丰富的事例,认识正比例。
教学重点:
1、结合丰富的事例,认识正比例。
2、能根据正比例的意义,判断两个相关联的量是不是成正比例。
教学难点:
能根据正比例的意义,判断两个相关联的量是不是成正比例。
教学用具:
课件
教学过程:
一、课前预习
预习书19---21页内容
1、填好书中所有的表格
2、理解粉色框中话的意义,体会正比例的两个量有怎样的关系?
3、把不理解的内容用笔作重点记号,待课上质疑解答
二、展示与交流
活动一:在情境中感受两种相关联的量之间的变化规律。
(一)情境一:
1、观察图,分别把正方形的周长与边长,面积与边长的变化情况填入表格中。请根据你的观察,把数据填在表中。
2、填完表以后思考:正方形的周长与边长,面积与边长的变化是否有关系?它们的变化分别有怎样的规律?规律相同吗?
说说从数据中发现了什么?
3、小结:正方形的周长和面积都随边长的增加而增加,在变化过程中,正方形的周长与边长的比值一定都是4。正方形的面积一边长的比是边长,是一个不确定的值。
说说你发现的规律。
(二)情境二:
1、一种汽车行驶的速度为90千米/小时。汽车行驶的时间和路程如下:
2、请把下表填写完整。
3、从表中你发现了什么规律?
说说你发现的规律:路程与时间的比值(速度)相同。
(三)情境三:
1、一些人买一种苹果,购买苹果的质量和应付的钱数如下。
2、把表填写完整。
3、从表中发现了什么规律?
应付的钱数与质量的比值(也就是单价)相同。
4、说说以上两个例子有什么共同的特点。
小结:路程随时间的变化而变化,在变化过程中路程与时间的比值相同;应付的钱数随购买苹果的质量的变化而变化,在变化过程中应付的钱数与质量的比值相同。
5、正比例关系:
(1)时间增加,所走的路程也相应增加,而且路程与时间的比值(速度)相同。那么我们说路程和时间成正比例。
(2)购买苹果应付的钱数与质量有什么关系?
6、观察思考成正比例的量有什么特征?
一个量随另一个量的变化而变化,在变化过程中这两个量的比值相同。
(四)想一想:
1、正方形的周长与边长成正比例吗?面积与边长呢?为什么?
师小结:
(1)正方形的周长随边长的变化而变化,并且周长与边长的比值都是4,所以正方形的周长与边长成正比例。
请你也试着说一说。
(2)正方形的面积虽然也随边长的变化而变化,但面积与边长的比值是一个变化的值,所以正方形的面积和边长不成正比例。
请生用自己的语言说一说。
2、小明和爸爸的年龄变化情况如下:
小明的年龄/岁67891011
爸爸的年龄/岁3233
(1)把表填写完整。
(2)父子的年龄成正比例吗?为什么?
(3)爸爸的年龄=小明的年龄+26。虽然小明岁数增加,爸爸岁数也增加,但是小明岁数与爸爸岁数的比值随着时间发生变化,不是一个确定的值,所以父子的年龄不成正比例。
与同桌交流,再集体汇报
在老师的小结中感受并总结正比例关系的特征
人教版小学六年级上册数学教案篇4
学情分析
了解了按比例分配的应用,将通过练习进一步巩固此类问题的解决方法。
学习目标
能运用比的意义解决按照一定的比进行分配的实际问题,进一步体会比的意义,提高解决问题的能力。
导学策略
练习、反思、总结。
教学准备
小黑板
教师活动
学生活动
一、基本训练:
男女职工人数比是5∶4根据这句话你想到了什么?
二、按比例分配练习:
(一)一个乡共有拖拉机180台,其中大型拖拉机和手扶拖拉机台数的比是2∶7.这两种拖拉机各有多少台?
(二)建筑工人用2份水泥、3份沙子和5份石子配置一种混凝土.配置6000千克这种混凝土,需要水泥、沙子和石子各多少千克?
(三)一种药水是把药粉和水按照1∶100的比例配成的.要配成这种药水4040千克,需要药粉多少千克?
(四)用84厘米长的铁丝围成一个三角形,这个三角形三条边长度的比是3∶4∶5.这个三角形三条边各是多少厘米?
1.还是按比例分配问题吗?
2.如果是四个数的连比你还会解答吗?
三、判断
一个长方形周长是20厘米,长与宽的比是7∶3,求长与宽各是多少厘米?
7+3=1020=14(厘米)20=6(厘米)【错,要分的不是20厘米】
四、思考:平均分是不是按比例分配的应用题?按照几比几分配的
五、课堂练习:《伴你成长》
人教版小学六年级上册数学教案篇5
教材分析
这节课是在学习了“已知一个数的几分之几是多少,求这个数”的分数应用题的基础上,根据稍复杂的求一个数的几分之几是多少的分数应用题的数量关系,使学生掌握解题思路,学会用方程解答。根据新旧知识的联系,抓住了数量关系相同,通过复习题的分析解答,让学生找出熟悉的数量关系,再把题进行改动变化。在边画图、边分析的过程中,沟通了知识间的联系,便于学生理解和思维,促进了学生分析思维能力的发展和综合运用知识灵活解决实际问题的能力。
学情分析
在已经学习了,已知一个数的几分之几是多少,求这个数是多少的问题的基础上,六年级学生能在一定的基础之上去拓展,去学习更新的知识。
教学目标
逆向思维,能根据具体的数量和分率,求出单位“1”的量。通过教学, 使学生在理解分数除法意义及掌握分数乘法应用题解题思路的基础上,掌握已知一个数的几分之几是多少求这个数的稍复杂分数除法应用题的解题思路和方法,能比较熟练地用方程解答一些简单的实际问题。
教学重点和难点
1、 能确定单位“1”,理清题中的数量关系。
2、利用题中的等量关系用方程解答。
教学过程
一、1、苹果的重量是x千克,梨的重量比苹果多5千克 。
⑴、梨的重量比苹果多了( )千克。
⑵、梨的重量是( )千克。
2、钢笔x元,比毛笔少了3元 。
⑴、钢笔比毛笔少了( )元。
⑵、毛笔是( )元。
3、小结:解答分数应用题的关键是找准单位“1”,如果单位“1”的具体数量是已知的,要求单位“1”的几分之几是多少,就可以根据分数乘法的意义,直接用乘法计算。
二、新授课
1、教学补充例题:水果店运来了一些苹果,已经卖了36千克 ,还剩下20千克,水果店运来了多少苹果?
(1)卖了 是什么意思?应该把哪个数量看作单位“1”?
(2)引导学生理解题意,画出线段图。
(3)引导学生根据线段图,分析数量关系式:运来苹果的重量-卖了的重量=剩下的重量
(4)指名列出方程。解:设运来苹果x千克。
x-36=20
2、教学例2
(1)出示例题,理解题意。
(2)比航模组多是什么意思?引导学生说出:是把航模组的人数看作单位“1”,美术组少的人数占航模组的 (1+)
(2)学生试画出线段图。
(3)根据线段图,结合题中的分率句,列出数量关系式:
航模小组人数+美术小组比航模小组多的人数=美术小组人数
(4)根据等量关系式解答问题。
解:设航模小组有人。
(1+)=25
=25÷
=20
答:略。
三、小结
1、今天学习了两道应用题,找出它们的共同点?(这两道应用题,题里的单位“1”都是未知的数量,都可以列方程来解,这样顺着题意列出方程思考起来比较方便。)
2、用方程解答稍复杂的分数应用题的关键是什么?(关键是找准单位“1”,再按照题意找出数量间的相等关系列出方程)
四、练习
练习十第4、12、14题。
人教版小学六年级上册数学教案篇6
教学目标:
1、知识与技能目标
能够正确运用圆锥体积计算公式解决实际有关圆锥体积的实际应用问题。
2、过程与方法
在探作中完成圆锥体积公式的推导。在合作探究中探明等底等高圆柱体积与圆锥体积内在联系。
3、情感态度与价值感
在探索合作中感受教学与我生活的密切联系,让学生感受探究成功的快乐。
教学重点:
掌握圆锥体积的计算公式,并能灵活利用公式求圆锥的体积。
教学难点:
理解圆锥体积公式的推导过程及解决生活中的实际问题
学习者特征分析:
接受教育者是小学六年级的学生。
教学策略选择与设计:
(1)引导学生主动建构知识是新课标的重要理念,六年级的学生尽管具备了一定的逻辑思维能力,但感性知识对于他们来说还是非常重要的。因此,教学中通过引导学生通过自主探索、解决问题,真正掌握所学知识,发展数学能力,真正做到“动手操作、体验成功”
(2)以实验要求为主线,既动手操作,又动脑思考,努力探索圆锥体的计算方法。
(3)问题解决为主的教学策略:通过演示、小组交流、动手操作、感念辨析等方式,本课从具体的学生感兴趣的活动中,让学生自己发现问题,提出问题,体验探索成功的快乐;提高学生解决问题的能力,巩固所学知识。
教学资源与工具设计:
(1)每位同学准备等底等高的圆柱体和圆锥体6套,大小不同的圆柱体和圆锥体6套、6水槽红颜色水。直尺6把。
(2)教师自制的多媒体课件;
教学过程:
一、复习旧知,课前铺垫
1、怎样计算圆柱的体积?
指名回答,教师板书:圆柱体的体积=底面积×高。
2、一个圆柱的底面积是60平方分米,高15分米,它的体积是多少立方分米?
指两名板演,全班齐练,集体订正。
二、提出质疑,引入新课
圆锥有什么特征?它的体积如何计算呢?
今天我们就利用这些知识探讨新的——怎样计算圆锥的体积(板书课题)
三、动手操作,获得新知
1、探讨圆锥的体积公式
教师:怎样探讨圆锥的体积计算公式呢?在回答这个问题之前,请同学们先想一想,我们是怎样知道圆柱体积公式的:
学生回答,教师板书:
圆柱——(转化)——长方体
圆柱体积公式——(推导)——长方体体积公式
教师:借鉴这种方法,为了我们研究圆锥体体积的方便,每个组都准备了一个圆柱体和一个圆锥体。你们小组比比看,这两个形体有什么相同的地方?学生操作比较。
(1)提问学生:你发现到什么?(这个圆柱体和这个圆锥体的形状有什么关系)
(学生得出:底面积相等,高也相等。)
底面积相等,高也相等,用数学语言说就叫“等底等高”。
(板书:等底等高)
(2)为什么?既然这两个形体是等底等高的,那么我们就跟求圆柱体体积一样,就用“底面积×高”来求圆锥体体积行不行?为什么?
教师:圆锥体的体积小,那你估计一下这两个形体的体积大小有什么样的关系?(指名发言)
用水和圆柱体、圆锥体做实验。怎样做这个实验由小组同学自己商量,但最后要向同学们汇报,你们组做实验的圆柱体和圆锥体在体积大小上有什么样的倍数关系。
(3)学生分组做实验。
谁来汇报一下,你们组是怎样做实验的?
你们做实验的圆柱体和圆锥体在体积大小上发现有什么倍数关系?(学生发言:圆柱体的体积是圆锥体体积的3倍)
同学们得出这个结论非常重要,其他组也是这样的吗?
我们学过用字母表示数,谁来把这个公式整理一下?(指名发言)
(4)学生操作:出示另外一组大小不同的圆柱体和圆锥体进行体积大小的比较,通过比较你发现什么?
学生回答后,教师整理归纳:不是任何一个圆锥体的体积都是任何一个圆柱体体积的。(老师拿起一个小圆锥、一个大圆柱)如果老师把这个大圆锥体里装满了砂子,往这个小圆柱体里倒,倒三次能倒满吗?(不能)
为什么你们做实验的圆锥体里装满了水往圆柱体里倒,倒三次能倒满呢?(因为是等底等高的圆柱体和圆锥体。)
在等底等高的情况下。
(老师在体积公式与“等底等高”四个字上连线。)
现在我们得到的这个结论就更完整了。(指名反复叙述公式。)
教师:同学们圆锥体里装满了水往圆柱体里倒,只倒一次,看看能不能想办法推出计算公式?让学生动脑动手?
得出用尺子量圆锥里的水倒进圆柱里,水高是原来水高的1/3、
小结:今后我们求圆锥体体积就用这种方法来计算。
(5)应用巩固
1、出示例题学生读题,理解题意,自己解决问题。
例一个圆锥形的零件,底面积是19平方厘米,高是12厘米,这个零件的体积是多少?
学生完成后,进行小组交流。
你是怎样想的和怎样解决问题。(提问学生多人)
教师板书:
1/3 ×19×12=76(立方厘米)
答:它的`体积是76立方米
2、练习题。
一个圆锥体,半径为6cm,高为18cm。体积是多少?(学生在黑板上只列式,反馈。)
3、出示例2:要求学生自己读题,理解题意思。
有一个近似于圆锥的小麦堆,测得底面半径是2米,高是1、5米。你能计算出这堆小麦的体积吗?
(1)提问:从题目中你知道什么?
(2)学生独立完成后教师提问。并回答同学的质疑:3、14×()×1、5表示什么?为什么要先求圆锥的体积?得数保留整千克数是什么意思?4、比较:例1和例2有什么地方不同?
(1)直接告诉了我们底面积,而(2)没有直接告诉,要求我们先求出底面积,再求出圆锥体积。
四、综合练习,发展思维
1、一个圆锥形沙堆,高是1、5米,底面半径是2米,每立方米沙重1、8吨。这堆沙约重多少吨?
2、选择题。
每道题下面有3个答案,你认为哪个答案正确就用手指数表示。
(1)一个圆锥体的体积是a立方米,和它等底等高的圆柱体体积是()
立方米3a立方米9立方米
(2)把一段圆钢切削成一个的圆锥体,圆柱体体积是6立方米,圆锥体体积是()立方米
6立方米3立方米2立方米
3、学生操作
看看我们的教室是什么体?(长方体)
要在我们的教室里放一个尽可能大的圆锥体,想一想,怎样放体积?(小组讨论)
指名发言。当争论不出结果时,让学生以小组为单位动手测量数据:教室长12m,宽6m,高4m、并板书出来,再比较怎样放体积的圆锥体。
五、课后小结,归纳知识
这节课你有什么收获?哪个同学、哪个小组学习?
六、作业布置,巩固新知
1、本节课后第3、4、5题。
2、回去观察你生活身边有哪圆锥物体?测量计算它们的体积。下节课交流汇报。
人教版小学六年级上册数学教案优秀6篇相关文章: