编写教学反思能够增强老师的教学质量,只有将教学反思写好,我们才能找出课堂中存在的问题,66范文网小编今天就为您带来了解方程三教学反思8篇,相信一定会对你有所帮助。
解方程三教学反思篇1
义务教育小学阶段五年级数学上册第五单元《简易方程》在解简易方程呈现五个例题。
其中例1以x+3=9为例,讨论了x加减某一数的方程解法。教学重点是运用等式的性质1解方程,并引入方程的解与解方程两个概念。如图所示:
为了便于给出解方程全过程的直观展示,例题中借助三幅天平演示图,展现了解方程的完整思考过程,这一点值得称道,对于学生来说,这样的图示剖析,有助于学生自我探究理解,学习解简易方程,从而学会解简易方程的方法。
但问题来了。在例1当中没有完整的解题过程示范,只有检验过程的示范。如上图所示。而完整的示范出现在例3,经历了例1运用等式性质1解方程,例2利用等式性质2解方程,递进至例3完成方程转化解方法(未知数位于减数、除数位置,属逆向解方程)才有一个完整的解方程的示范。如下图所示:
从学习心理学来讲,学生在接触新知识点的第一印象极为重要,第一次学习新知,是由不知到知,由不懂到懂而迈出的重要第一步。这一步的踏出对学生而言异常重要。第一次是新的,大脑对新知的接受是处于兴奋状态,此时的理解记忆刻痕是最深的,无论到的是直,是斜,一旦留下,再想更改那就难上加难。作为老师一定要重视学生的第一次接触新知,“课上损失课外补”更是事倍功半。
学材的编排着实让我有点挠头,明明能够一目了解,通过阅读自学就能搞定的解方程规范,这样一个基础性的知识点,非要放在例3才有完整呈现,在实际的课堂教学中有点不得劲儿,也有些不符合学生学习的认知规律。
解方程三教学反思篇2
我上了一节数学课《稍复杂的方程》这节课之后,总的感受就是不太理想。下面是我对这节课的反思:
本节课的目标是:理解实际问题中有关和、差、倍的数量关系。初步学会设一个未知数,列方程解答含两个未知数的实际问题。培养学生的比较、分析能力和类比学习的能力。
一、从简单习题入手,降低问题的难度。
练习填空是找题里数量间的相等关系。为了帮助学生找准题量的等量关系。运用了什么运算定律?引出问题,激发学生的学习数学的兴趣,又为学习新知识做了很多的铺垫。
二、放手让学生思考、解答,选性。
让学生当小老师,从问题中找出数量之间的.关系,弄清解决问题的思路,展示讲解自己的思考过程和结果,这样既增加学生学习的信心,又培养学生分析问题的能力,发展学生的思维空间;然后,我大胆放手,让学生用自己学过的方法来解答例3,最后老师让学生把各种不同的解法板演在黑板上,让学生分析哪种解法合理,再从中选择最佳解题方案。这样既突出了最佳解题思路,又强化了列方程解题的优越性和解题的关键,促进了学生逻辑思维的发展。
三、教会知识,不如教学生好的学习方法
应用题的教学,关键是理清思路,教给方法,启迪思维,提高解题能力。这节课的教学中,以地球的表面积、海洋面积、陆地面积的关系来引导学生。我组织学生小组讨论交流,再以练习题中看图列方程激发学生的兴趣,然后指导学生根据分析数量之间的关系,讨论交流解决问题的方法,让学生成为学习的主人,参与到教学的全过程中去。所以在应用题的教学中,教师要指导学生学会分析应用题的解题方法。
总之,这节成功之处是教会学生好学习方法比教会知识更重要,让学生真正成为学习的主体。实现了教师的地位是教学过程的组织者、引导者。
解方程三教学反思篇3
本节课是在学生学会用方程组表示问题中的条件以及能运用代入法、加减法解二元一次方程组的基础上,探究如何用二元一次方程组解决实际问题。
本节课的教学重点是让学生经历和体验用方程组解决实际问题的过程,抓住实际问题的等量关系建立方程组模型。教学难点是在探究过程中分析题意,由相等关系正确地建立方程组,从而把实际问题转化为数学问题。教学中,为了突破重难点,我主要让学生通过独立思考、自主探索、合作交流、估算验证等学习方式,在思考,交流等数学活动中,养成学生严谨的思维方式和良好的学习习惯,在解决这些实际问题当中,我充分体现了以学生发展为本,让学生积极参与并且有效参与的新课程理念,在这样的理念指导下,我充分让时间留给学生,让讲台留给学生,让发现留给学生,注重学生情感价值观的培养,发扬教学民主,发挥了学生的主动意识,因此在学生解决某校环保小组成员收集废电池问题当中,学生能想出列方程组的方法,这是我意想不到的收获,这是我实施新课程理念中的最大成功,学生能用多种方法解题,扩展了学生的思维,让学生体验解题时有方法,方法多,方法好。从而树立了学生学习的信心,激发了学生学习的积极性,让学生真正成为课堂的主人。
教学中,我还通过创设情境,使教学内容更加生活化,采用引发指导、多样评价、鼓励肯定等多种教学方法,增强学生的学习兴趣,让学生体验成功,从而培养学生分析问题、解决问题的能力。同时,我能改变传统教学的方法,跳出文本,活用教材。如:在探究1使学生明确把实际问题转化为数学问题,也就是用二元一次方程组解决,从而让学生体验方程组的实用性。同时,在这一过程中,让学生对估算与精确计算进行比较,从而明确估算有时会有误差,要想得到正确数据,需要通过用数学知识精算,让学生体会数学的应用价值,从而鼓励学生更好地学好数学。
总之,从整节课来看,学生的情绪比较饱满,思维比较活跃。我能较好地完成了教学目标,但还有一些有待探索与需要改进的地方,如:时间把握得不够好,使得“感悟与反思”这一教学环节没有得以实施。如果我能在前面几个教学环节抓住时间,让学生在后几环节充分展现自我,我想这样更有利于学生的个性发展。再有,教学中,没有很好地关注极个别学生,以至于他们的积极性没能得以充分发挥,今后,我在这方面要多加努力。
媒体辅助手段丰富学生的学习资料,生动活泼地展示所学内容,强调学生的动脑思考和主动参与,通过集体讨论、小组活动,以合作学习促进学生的自主探究。
教师是学生学习的组织者、促进者、合作者,学生是学习的主人,在教师的指导下主动地、富有个性地学习,用自己的大脑去亲自探索,用自己的心灵亲自去体验、去感悟。
解方程三教学反思篇4
记得我以前上学的时候,解最简单的方程的方式是这样的:比如x+5=8就是x=8-5,x=3。那时觉得很好懂,但是现在五年级课本上是这样的: x+5=8,x+5-5=8-5,x=3。看起来比较复杂。开始接触到这个课程时看到教材例题中的解法感觉很疑惑,百思不得其解。为什么新课程的解方程教学要绕远路?如果单单从简单的加减乘除的方程来看,第一种方法无疑是简单易懂而且步骤少,而第二种方法就相对复杂了。那教材这样改的目的是什么呢?深入研究教参后我体会很深,明白了新课程数学教学要 瞻前顾后的道理。
新课程的改革,更加注重知识的迁移和联系,使得小学的知识要体现与初中更加的接轨,五年级上册第四单元解简易方程中进行了一次新的改革。要求方程的解法要根据天平的原理来进行解答,也就是说要通过等式的性质来解方程,这一方法让方程的解法找到了本质的东西。老教材中解方程的教学是利用加减乘除各部分之间的关系解决的,学生只要掌握了一个加数=和-另一个加数,减数=被减数-差,被减数=差+减数,一个因数=积÷另一个因数,除数=被除数÷商,被除数=商×除数这些关系式,不管是简单的还是复杂的方程都可以用这些关系式去解。而我们新教材却完全不是这种方法,它是利用天平的平衡原理得到等式的基本性质,即等式的两边同时加上或减去同一个数等式不变,和等式的两边同时乘或除以同一个数(0除外),等式不变进行解方程的。新教材如果能把天平的规律教学得到位,这样就能把等式性质掌握好,等式性质掌握的好了解起方程来也有规律可循了。于是,我在教学时充分地利用天平实物以及课件让学生深入地理解天平的平衡规律,从而顺利地揭示出了等式的性质。这样在解简易方程时学生很容易掌握方法。知道未知数加(或减)一个数时,只要在方程的两边同时减(或加)同一个数,未知数乘(或除)一个数时,只要在方程的两边同时除(或乘)同一个数即可。一般不会出现运算符号弄错的现象了。所以虽然复杂,但是更容易掌握。
解方程三教学反思篇5
解方程是数学领域里一块儿重要内容,在实际生活中,学会了列方程解决问题之后,很多不易用算术方法解答的习题,却能列方程很容易地解答出来,这足以说明列方程解决问题比算术法解决问题有非常明显的优越性。
今年我教的是四年级,所用教材是青岛版五四制教材,第一单元就出现了解方程的内容,这部分教材我已经教学了四遍了,按理说这第五次教学这部分内容应该是易如反掌、挥洒自如,可是面对新教材的设计,我这个五年不教学高年级的老师却有了很大困惑----本教材的教学设计打破了传统的教学方法,而出乎我预料的则是借用天平演示使学生感悟“等式”,知道“等式两边都加上或减去都乘或除以同一个非零的数,等式仍然成立”这个规律,从而使学生进一步从真正意义上理解方程的意义,并学会运用等式的性质解方程。在以前几轮教材中,学习解方程之前都是先要求学生熟练掌握加、减、乘、除法各部分之间的关系,然后利用:一个加数=和-另一个加数;被减数=减数+差;减数=被减数-差;被除数=商×除数;除数=被除数÷商等关系式来求出方程的解,就连我自己小时候学习的解方程也都是根据加减、乘除法各部分之间的关系求方程的解的。
开始我有些怀疑,以为只有青岛版五四制这个版本的教材利用了等式的性质教学的,于是急切的打开电脑找到各种版本的电子教材翻看这部分内容,却发现各种版本的教材设计思路是一样的,都是先学习等式的基本性质,接着再运用等式的基本性质解方程。为了彻底弄明白教材的编写意图,我又找到了这几个版本的教材所配套的教师教学用书翻看,新教材编写者大致都是这样解释的:长期以来,小学教学简易方程时,方程变形的依据总是加减、乘除运算之间的关系,这实际上是用算术的思路求未知数。到了中学又要另起炉灶,引入等式的基本性质或方程的同解原理来教学解方程。小学的思路及其算法掌握得越牢固,对中学代数起步教学的负迁移就越明显。因此,现在根据《标准》的要求,从小学起就引入等式的基本性质,并以此为基础导出解方程的方法。这就较为彻底地避免了同一内容两种思路、两种算理解释的现象,有利于加强中小学数学教学的衔接。看了这些内容,我才从思想上认可了这种设计思路,原来是为了使小学教学解方程和中学教学解方程的方法保持一致。
理解了教材的设计意图,我开始强迫自己扭转老的教学思路。结果学生因为是初次接触,课堂上学习的竟是那样的有滋有味。但在后面的教学中,我渐渐发现采用等式的基本性质解方程给学生带来的竟然是局部的衔接,而存在局部的衔接对学生会更困难。从教材的编排上,整体难度虽然有所下降,却把用等式的性质解方程的方法单一化了。教材有意避开了形如a—x=b a÷x=b等类型的题目,不教学此类方程的求解方法,因为这类题目如果采用等式的性质来解非常麻烦。很显然采用等式的性质这种方法教学小学阶段的解方程目前存在着很大的局限性。
但在教学列方程解决实际问题时,我们又不能避免学生在列方程时,依然出现形如a-x=b和a÷x=b的方程,特别是我们不能刻意地给学生强调不能列出x在后面做减数或做除数的方程,如果这样强调,学生心中会存在很大的疑惑,当学生列出这样的方程时,我们更头痛于学生求解能力的局限性。
鉴于以上原因,课堂上我采用了新老教学思路结合使用的方法,先从教材中的新思路运用等式的基本性质教会孩子解较简单的方程,以便于日后初中学习时顺利接轨,同时对于初中学习“移项”也能顺利接收。但是面对现在四年级孩子的思维及接受能力,我再利用老教材的教学思路“加减、乘除法各部分之间的关系”教给孩子解方程,至少这样能让我的学生会解各种类型的方程,特别是有利于孩子们列方程解决实际问题,他们不会再被“以乘代除”、“以加代减”的思路困扰着列方程,并且列出来还能顺利解这个方程。
我个人以为,这样用新旧方法结合着教学,既能让学生为以后的学习做好衔接,形成绿色的通道,同时又体现解决同一问题方法、思路的多样性。通过学生的课堂作业,我发现教学效果出奇的好。
通过解方程这部分内容的教学,我感到不论你的教龄有多长,你对同一教学内容教学了有几遍,每次教学都需要教师静下心来好好的研究教材教法,这样才能用最适合学生未来发展的方法去教学生。
解方程三教学反思篇6
今天开一节新课,课题是《圆的标准方程》。教学上,我用了奥运五环旗来引入,通过五环的圆形状,让学生举例生活中的圆,借以活跃课堂的气氛并提出本节研究的课题。接下来,设计两个问题作为课堂的串联。
问题一:如何作出一个圆?先让学生上来画圆,再结合画圆的呈现的情境,引导学生回顾圆的定义;
问题二:如果圆心为c(a,b),半径为r,如何求圆的方程?教师根据学生作出的圆,添上坐标轴,让学生根据求曲线方程的步骤推导圆的方程。两个问题一解决,圆的标准方程也就浮出水面了。
结合例题,教师对圆的标准方程的结构作了进一步说明,特别强调了圆心在原点的情况,然后,就进入了练习巩固阶段。本节课设置了三个题组,题组一(4题):已知圆的标准方程,口答圆的圆心坐标和半径;题组二(4题):已知圆的圆心坐标和半径,写出圆的标准方程;通过题组一、二,教师引导学生强化了确定圆方程的关键是明确圆心坐标和圆半径,如果条件不成熟,则需根据条件先求出圆心坐标和半径。于是,给出题组三,都是要求学生先作出草图并求圆的标准方程,条件分别如下:
(1)已知圆心和过圆上一点;
(2)以a、b两点为圆的直径;
(3)已知圆心,且圆与一直线相切;
(4)已知圆过两点和半径r。
四道题目,让学生先作简单的思考,然后叫四位学生分别上来板演。这样的安排,也是经过深思熟虑的,但放手让学生做之后,结果却不尽如人意。尤其是3、4两题,两位学生耗费了近15分钟时间,虽然第4题得到了解决,但离下课仅剩下2分钟。结果只能对学生的板演作匆匆忙忙的说明,未能对解题思路作进一步的延伸,是为本课一遗憾。
在课后,几个同事进行了交流,认为题组三的给出太过突然,应该先设置一个类似的例题作缓冲,而且题4在本节课显得难度过高,应当放在下节课再讲。思索再三,确实同事的见解很到位,本节课还是题量设置过大了一些,在教学中,题组三应该一题一题地给出,然后尽可能详细地引导学生对解题思路和过程进行分析,讲多少题,应根据课堂的情况进行调整。如此,弹性会更大,课堂也会进行得更从容。
看来,如何放手给学生?放手到什么程度?总有很多让人品味的地方。
解方程三教学反思篇7
本节课的探究交流主要体现在“含有未知数的等式,称为方程”的这一概念获取过程中,在这个过程中我首先是让学生通过观察天平“平衡现象→不平衡到平衡→不确定现象”三个直观活动,抽象出相关的数学式子,再通过观察这些数学式子的特征,抽象出方程的概念,即由“式子→等式→方程”的抽象过程,然后通过必要的练习巩固加深对方程概念的理解和应用,《方程的意义》教学反思。通过这一系列的观察、思考、分类、归纳突破本课的重难点。在这几个环节中有这样几个特点:
1.用天平创设情境直观形象,有助学生理解式子的.意思
等式是一个数学概念。如果离开现实背景出现都是已知数组成的等式,虽然可以通过计算体会相等,但枯躁乏味,学生不会感兴趣。如果离开现实情境出现含有未知数的等式,学生很难体会等式的具体含义。天平是计量物体质量的工具,但它也可以通过平衡或者不平衡判断出两个物体的质量是否相等,天平图创设情境,利用鲜明的直观形象写出表示相等的式子和表示不相等的式子,可以帮助学生理解式子的意思,也充分利用了教材的主题图。
2、对方程的认识从表面趋向本质
(1)在分类比较中认识方程的主要特征。在教学过程中,学生通过观察和操作得到了很多不同的式子,然后让学生把写出的式子进行分类。先让学生独立思考,再在组内交流,讨论思考发现式子的不同,分类概括。有人可能先分成等式和不是等式两类,再把等式分成不含未知数和含有未知数两种情况;有人可能先分成不含未知数和含有未知数两类,再把含有未知数的式子分成等式和不是等式两种情况。尽管分的过程不完全一致,但最后都分出了含有未知数的等式,经过探索和交流,认识方程的特征,归纳出方程的意义。
( 2)要体会方程是一种数学模型。“含有未知数的等式”描述了方程的外部特征,并不是本质特征。方程用等式表示数量关系,它由已知数和未知数共同组成,表达的相等关系是现象、事件中最主要的数量关系。要让学生体会方程的本质特征。在教学过程中,通过观察天平的相等关系(如左盘中是100克的杯子和x克水右盘中是250克砝码,天平平衡,解释方程的具体含义),感受方程与日常生活的联系,体会方程用数学符号抽象地表达了等量关系,对方程的认识从表面趋向本质。
3在“看”“说”和“写”中体会式子
当方程的意义建立后,我让学生观察一组式子判断它们是不是方程,通过判断说明这些式子为什么是“方程”,为什么“不是方程”,体会方程与等式的关系,加深对方程意义的理解。再让学生自己写出一些方程,展示自己写的方法。
解方程三教学反思篇8
?方程的意义》是一节数学概念课,是在学生熟悉了常见的数量关系,能够用字母表示数的基础上教学,但理解起来有一定的难度。下面就结合我所执教的《方程的意义》这节课,谈谈在教学中的做法和看法。
回顾教学过程,我认为有如下几个特点。
一、复习导入,激趣揭题
该环节主要复习与新知识有间接联系的旧知识,为学习新知识铺垫搭桥,以旧引新,方程是表达实际问题数量关系的一种数学模型,是在学生熟悉了常见的数量关系,能够用字母表示数的基础上教学的,因此开课伊始我结合与学生有关的一些生活现象出示了一组题,要求学生用含有字母的式子表示出来。这些题的出现即能让学生复习巩固以前所学的知识也能让学生体会到我们生活中有很多现象都能用式子表示出来,激起学生的学习兴趣,引出这节课的学习内容,这样的开课很实际,很干脆,也很有用。
二、实践操作,建立方程模型
本节课的探究交流主要体现在“含有未知数的等式,称为方程”的这一概念获取过程中,在这个过程中我首先是让学生通过观察天平“平衡现象arr;不平衡到平衡arr;不确定现象”三个直观活动,抽象出相关的数学式子,再通过观察这些数学式子的特征,抽象出方程的概念,即由“式子arr;等式arr;方程”的抽象过程,然后通过必要的练习巩固加深对方程概念的理解和应用。通过这一系列的观察、思考、分类、归纳突破本课的重难点。
三、回归生活,体会方程
在建立方程的意义以后,设计了根据情境图写出相应的方程,并在最后引入生活实例,从中找出不同的方程。这一过程学生在生活实际中寻找等量关系列方程,进一步体会方程的意义,加深了对方程概念的理解,同时也为以后运用方程知识解决实际问题打下基础。
四、教学中的不足
1、从学生已有的知识储备来看,他们会用含有字母的式子表示数量,大多数学生知道等式并能举例,向学生提供表示天平左右两边平衡的问题情境,大部分学生运用算术方法列式。但是,学生利用算术方法的解题思路,对列方程造成了一定的干扰。
2、对于利用天平解决实际问题虽然较感兴趣,但是,要求学生把看到的生活情境转化成用数学语言,用含有未知数的数量关系表示时,存在困难。
3、我应留给学生足够的时间去思考,而不应该替学生很快的说出答案。
五、改进措施
在以后的课堂中,我想首先是在课下的备课环节,重点的知识应重点去备,一定要详实,具体,充分考虑各种可能出现的情况,作到讲出一种,备出十种。备学生有时比备教材更为重要,稍微与学生脱节的备课都会在课堂教学中产生不小的影响。课上表述任务要求一定要具体,每一个形容,都会有不同的理解,学生也会完成到不同的层次上,要清晰,易理解,使学生能够按照要求操作、完成。
解方程三教学反思8篇相关文章: