数与代数的教案6篇

时间:
Mute
分享
下载本文

考虑到学生的认知水平和学习节奏,教师编写的教案应具有针对性和灵活性,​,关注学生反馈并据此优化内容,是教案持续改进的有效方法,​,以下是66范文网小编精心为您推荐的数与代数的教案6篇,供大家参考。

数与代数的教案6篇

数与代数的教案篇1

教学

目标1.让学生领会代数式值的概念;

2.了解求代数式值的解题过程及格式

3.初步领悟代数式的值随字母的取值变化而变化的情况

教学

重点培养学生的探索精神和探索能力。教学

难点通过学习使学生了解求代数式的值在日常生活中的应用;

教学

方法启发式教学

教学

用具

教学过程集体备课稿个案补充

新课引入

2001年7月13日,莫斯科时间17:08国际奥委会主席萨马兰奇宣布北京获得2008年第29届夏季奥运会的主办权。此时此刻举国欢腾,激情飞扬(多媒体展示当时的欢庆场面)。多媒体展示钟表:北京时间莫斯科时间

提出问题:你能根据图示得出北京时间和莫斯科时间的时差为多少?

如果用表示莫斯科时间,那么同一时刻的北京时间是多少?

学生回答:+5

进一步提出:国际奥委会主席萨马兰奇宣布北京获得2008年第29届夏季奥运会的主办权的北京时间是多少?

学生回答:+5=17+5=22时,即北京时间为22:08。

一、新课过程

代数式的值:一般地,用数值代替代数式里的字母,计算后所得的结果叫做代数式的值;例如22是代数式+5在=17时的值。

做一做:右图表示同一时刻的东京时间与北京时间:东京时间北京时间

⑴、你能根据右图知道北京与东京的时差吗?

⑵、设东京时间为,怎样用关于东京时间的代数式表示同一时刻的北京时间。

⑶、2002年世界杯足球赛于6月30日在日本横滨举行,开幕式开始的东京时间为20:00问开幕式开始的北京时间是几时?

二、课内练习

1、当分别取下列值时,求代数式的值:⑴⑵

2、当时,求下列代数式的`值:⑴⑵

3、当时,。

三、典例分析

例1当n分别取下列值时,求代数式n(n-1)/2的值:

(1)n=-1(2)n=4(3)n=0.6

解(1)当n=-1时,n(n-1)/2=(-1)x(-1-1)/2=1

(2)当n=4时,n(n-1)/2=4x(4-1)/2=6

(3)当n=0.6时,n(n-1)/2=0.6x(0.6-1)/2=-0.12

注意:负数代入求值时要括号,分数的乘方也要添上括号。

四、课堂练习1

1、当x分别取下列值时,求代数式20(1+x%)的值:

(1)x=40(2)x=25

2、当x=-2,y=3时,求下列代数式的值:

(1)3y-x(2)|3y+x|

3、当x分别取下列值时,求代数式4-3x的值:

(1)x=1(2)3(3)x=6

4、当a=3,b=3时,求下列代数式的值:

(1)2ab(2)a2+2ab+b2

五、典例分析

例2

小结、布置作业

数与代数的教案篇2

教学目标

1、使学生掌握代数式的值的概念,能用具体数值代替代数式中的字母,求出代数式的值;

2、培养学生准确地运算能力,并适当地渗透特殊与一般的辨证关系的思想。

教学重点和难点:

正确地求出代数式的值

课堂教学过程设计

一、从学生原有的认识结构提出问题

1、用代数式表示:(投影)

(1)a与b的和的平方;(2)a,b两数的平方和;

(3)a与b的和的50%?

2、用语言叙述代数式2n+10的意义?

3、对于第2题中的代数式2n+10,可否编成一道实际问题呢?(在学生回答的基础上,教师打投影)

某学校为了开展体育活动,要添置一批排球,每班配2个,学校另外留10个,如果这个学校共有n个班,总共需多少个排球?

若学校有15个班(即n=15),则添置排球总数为多少个?若有20个班呢?

最后,教师根据学生的回答情况,指出:需要添置排球总数,是随着班数的确定而确定的;当班数n取不同的数值时,代数式2n+10的计算结果也不同,显然,当n=15时,代数式的值是40;当n=20时,代数式的值是50?我们将上面计算的结果40和50,称为代数式2n+10当n=15和n=20时的值?这就是本节课我们将要学习研究的内容?

二、师生共同研究代数式的值的意义

1、用数值代替代数式里的字母,按代数式指明的运算,计算后所得的结果,叫做代数式的值?

2、结合上述例题,提出如下几个问题:

(1)求代数式2x+10的值,必须给出什么条件?

(2)代数式的值是由什么值的'确定而确定的?

当教师引导学生说出:“代数式的值是由代数式里字母的取值的确定而确定的”之后,可用图示帮助学生加深印象?

然后,教师指出:只要代数式里的字母给定一个确定的值,代数式就有唯一确定的值与它对应?

(3)求代数式的值可以分为几步呢?在“代入”这一步,应注意什么呢?

下面教师结合例题来引导学生归纳,概括出上述问题的答案?(教师板书例题时,应注意格式规范化)

例1当x=7,y=4,z=0时,求代数式x(2x-y+3z)的值?

解:当x=7,y=4,z=0时,

x(2x-y+3z)=7(27-4+30)

=7(14-4)

=70

注意:如果代数式中省略乘号,代入后需添上乘号?

例2根据下面a,b的值,求代数式a2-的值?

(1)a=4,b=12,(2)a=1,b=1?

解:(1)当a=4,b=12时,

a2-=42-=16-3=13;

(2)当a=1,b=1时,

a2-=-=?

注意(1)如果字母取值是分数,作乘方运算时要加括号;

(2)注意书写格式,“当……时”的字样不要丢;

(3)代数式里的字母可取不同的值,但是所取的值不应当使代数式或代数式所表示的数量关系失去实际意义,如此例中a不能为零,在代数式2n+10中,n是代数班的个数,n不能取分数最后,请学生总结出求代数值的步骤:①代入数值②计算结果

三、课堂练习

1、(1)当x=2时,求代数式x2-1的值;

(2)当x=,y=时,求代数式x(x-y)的值?

2、当a=,b=时,求下列代数式的值:

(1)(a+b)2;(2)(a-b)2?

3、当x=5,y=3时,求代数式的值?

答案:1.(1)3;(2);2.?(1);(2);3..?

四、师生共同小结

首先,请学生回答下面问题:

1、本节课学习了哪些内容?

2、求代数式的值应分哪几步?

3、在“代入”这一步应注意什么”

其次,结合学生的回答,教师指出:(1)求代数式的值,就是用数值代替代数式里的字母按照代数式的运算顺序,直接计算后所得的结果就叫做代数式的值;(2)代数式的值是由代数式里字母所取值的确定而确定的?

五、作业

当a=2,b=1,c=3时,求下列代数式的值:(1)c-(c-a)(c-b);

数与代数的教案篇3

教学内容:

苏教版六下p77 “练习与实践”第6~10题。

教学目标:

学生进一步理解和掌握稍复杂的分数、百分数实际问题的数量关系和解题思路,能正确解答稍复杂的分数、百分数实际问题。

学生进一步认识分数、百分数实际问题的特点和解题方法,进一步体会分数、百分数实际问题的内在联系;能说明分析问题的过程,提高比较、分析、推理、判断等思维能力,增强分析问题和解决问题的能力。

学生加深体会分数、百分数在现实世界的实际应用,增强数学应用意识,提高学习数学的兴趣和学好数学的自信心;培养独立思考、主动交流的学习习惯。

教学重点:

稍复杂的分数、百分数实际问题的数量关系和解题方法。

教学难点:

理解各类分数、百分数实际问题的数量关系和解题思路。

教学过程:

一、揭示课题

谈话:上节课,我们复习了四则混合运算和运算律。这节课我们要复习分数、百分数的实际问题。(板书课题)通过复习,要进一步理清分数、百分数实际问题的数量关系和解题思路,掌握解题方法,提高解决分数、百分数实际问题的能力。

二、基本练习

根据下列问题找出单位“1”的量,并说出数量关系式。

(1)桃树棵树是梨树的几分之几?

(2)桃树棵树比梨树少几分之几?

(3)实际产量超过了计划的百分之几?

(4)实际降价了百分之几?

指名学生口答,并说说单位“1”的量是怎样找的。

根据条件找出单位“1”的数量,说出数量关系式。

说明:根据上面这样的条件,可以确定单位“1”的量,用单位“1”的量乘几分之几或百分之几,等于几分之几或百分之几的对应数量。三、应用练习

解答下列各题。

(1)李大爷收白菜300千克,已经售出240千克,已经售出几分之几?

(2) (题略)(3)(题略)

出学生读题,思考每题应怎样解答。

提问:这三题里表示单位“1”的量是哪个数量?为什么解答这三题的计算方法不相同?

解答下面各题。

你能列出每题的算式吗?请你说一说。

追问:为什么第(1)题只有一步计算,第(2)题要两步计算?解答分数、百分数实际问题要注意什么?

做“练习与实践”第7题。

学生读题后独立解答,指名板演,教师巡视、指导。集体校对,让学生说出解题思路,再说说有没有不同解法。

对比练习。

出示:(1)某市修建一条12千米长的高架公路,已经修了全长的60%,还有多少千米没有修?

(2)某市修建一条高架公路,已经修了全长的60%,还有千米没有修。这条高架公路长多少千米?

指名读题,说说两题中的条件和问题。提问:这两题有什么相同点和不同点?交流解法,教师板书算式和结果。

结合交流要求学生说说这两题分别是怎样想的。追问:这两题的'解题方法为什么不同?

做“练习与实践”第8题。

(1)学生读题,说说已知什么条件,第(1)题要求什么。让学生列式解答,指名板演。

交流:求一、二等奖的奖券一共多少张可以怎样想?这里每一步求的什么?

(2)让学生提出不同的问题,选择板书。

选择一个球两种奖券相差多少张的问题让学生解答。交流:你是怎样列式的?这个算是里每一步求的是什么?

做“练习与实践”第9题。

学生读题后独立解答。集体交流,让学生说说每道题的解题思路,教师板书算式和结果。提问:比较这三个实际问题,在解法上有什么联系和区别?

四、全课总结

这节课复习了什么内容?通过这节课的复习,你又有哪些收获?还有什么问题呢课题作业。“练习与实践”第6、10题。

数与代数的教案篇4

【学习目标】

1、了解代数式,单项式、单项式的系数、次数,多项式、多项式的项、次数,整式概念;

2、能用代数式表示简单问题的数量关系;

3、能解释一些简单代数式的实际背景或几何背景.

【学习重点】

对代数式意义的理解,分析问题中的数量关系,列出代数式.

【学习难点】

正确规范书写代数式和叙述代数式的意义.

【学习过程】

?问题情境、研讨』

情境一:小明去买苹果,苹果每千克1.5元,他买了a 千克.

问题1、一共用去多少钱?

问题2.学生模仿列举日常生活中的例子,其他学生给以解答.(得到以下式子:30a、9b、2ab+2bc+2ac、abc)

引导学生观察:30a、9b、2ab+2bc+2ac、abc、。我们把这些式子都称为代数式.

引入代数式定义:像n、-2 、0.8a、2n +500、abc、2ab+2bc +2ac等式子都是代数式。单独一个数或一个字母也是代数式.

情境二:让学生先观察:30a 、 9b、0.8a、abc.

问题:你发现了什么?它们有什么共同的特征?(引导学生说出它们都是字母与数相乘。)

(1)引入单项式定义:像0.9a,0.8b,2a,2a2,151.5%m等都是数与字母的积,这样的代数式叫单项式。单独一个数或一个字母也是单项式.

(2)单项式中的数字因数叫做这个单项式的系数.

(3)单项式中所有字母的指数的和叫做它的次数.

让学生列举单项式,并说出各单项式的系数与次数(巩固所学概念).

注意:系数与次数是一个数,应与字母区分.

情境三:①薯片每袋a 元, 9折优惠,虾条每袋b 元,8折优惠,两种食品各买一袋共需几元?

②一个长方形的宽是a m ,长是宽的2倍,这个长方形的长是多少?周长是多少?

③环形花坛铺草坪,大圆半径为rm,小圆半径为rm,需要草皮多少平方米?

问题1.观察①、②、③三题的结果?它们有什么共同点?

引入多项式:(1)几个单项式的和叫做多项式.其中的每个单项式叫做多项式的一个项.

(2)次数最高项的次数叫做这个多项式的.次数。

问题2.你能举一个次数是2,项数也是2的多项式吗?

(学生各抒己见,教师及时鼓励。然后小结:单项式和多项式都是代数式.

引出整式:单项式和多项式统称整式.)

?例题讲评』 p63例题

?学生练习』 p67议一议 16

3.2 代数式随堂练习

评价_______________

1.n箱苹果重p千克,每箱重________千克.

2.甲同学身高a厘米,乙同学比甲同学高6厘米,则乙同学身高为______厘米.

3.全校学生总数是x,其中女生占40%,则女生人数是________.

4.一个两位数,个位数是x,十位数是y,这个两位数为________,如果个位数字与十位数字对调,所得的两位数是_________.

5.在边长为a的正方形内,挖出一个底为b,高为 a的正三角形,则剩下的面积为________.

6.王洁同学买m本练习册花了n元,那么买2本练习册要______元.

7.如果陈秀娟同学用v千米/时的速度走完路程为9千米的路,那么需_______小时.

8.在西部大开发的过程中,为了保护环境,促进生态平衡,国家计划以每年10%的速度栽树绿化,如果第一年植树绿化是a公顷,那么,到第三年的植树绿化为_______公顷.

9.12345是一个五位数,将数字1放到右边构成新的五位数23451,如果x是一个四位数,现在把数字1放在它的右边,得到一个五位数,用代数式如何表示这个新五位数?若将1放在左边,也可以得到一个五位数,又如何表示?

10.我们知道:

1+3=4=22;

1+3+5=9=32;

1+3+5+7=16=42;

1+3+5+7+9=25=52.

根据前面各式规律,可以猜测:

1+3+5+7+9++(2n-1)=________.(其中n为自然数).

11.解释代数式300-2a的实际意义.

数与代数的教案篇5

教学目标

知识与技能:

1.会求代数式的值,会利用代数式求值判断代数式所反应的规律;

2.能利用求代数式的值解决较简单的实际问题;

过程与方法:

3.通过求代数式的值,体会代数式实际上是由计算程序反映的一种数量间的关系;

4.将不同的数代入同一代数式,求出相应的值,能够从所得代数式的值来判断代数式所反映的规律,体会抽象的代数式与实际数量关系之间的关系.

情感态度价值观:

5.通过代数式求值,感受数学中的程序化和抽象性,感受抽象的字母和具体的数之间的关系,进一步理解字母表示数的意义,进一步增强符号感.

教学重点

理解代数式的意义,会求代数式的值

教学难点

利用代数式求值推断代数式所反映的规律

教学方法

引导、探究法,即引导学生发现规律,使其在探究过程中掌握知识

教学准备

多媒体,或投影仪,胶片

课时安排

1课时

教学过程

Ⅰ.巧设情景问题,引入课题

[师]我们在探讨了代数式之后,不仅能用字母与代数式表示数量关系,还能解释一些代数式的实际背景或几何意义.

下面我们来看一组数值转换机:(出示投影片§3.3a),大家想一想,做一做.

下面是一组数值转换机,写出图1的输出结果,找出图2的转换步骤:

[生1]图1的输出结果是:6x-3.

图2的转换步骤:-3、×6.

[师]这位同学书写的跟你们的一样吗?

[生齐声]一样.

[师]很好,同学们写得很正确,这两个数值转换机由于转换的步骤不一样,因此输出的代数式也不一样.

我们已经知道,表示数的字母具有任意性和确定性.当给出代数式时,如:6x-3,字母x可以取任何有理数,当给出未知数的值时,如x=5时,求6x-3的值,这时,x只能是5这个确定的数.

今天我们就来研究第三节:代数式求值.

Ⅱ.讲授新课

当我们把一些数输入“数值转换机”时,通过一个算法,相应得就会得到一些数值.下面大家来做一做,填下表.(出示投影片§3.3b)

输入-2-

00.26

4.5

图1输出

图2输出

(学生计算,使他们认识到代数式求值就是转换过程或是某种计算).

[师]大家在运算时一定要注意:要按转换的步骤进行.填出结果了吗?……来同桌间相互检查.××同学说说你的结果.

[生]

[师]同学们做得都不错,很好,下面,我们来比赛一下,看谁做得又对又快.(出示投影片§3.3c)

议一议:

填写下表,并观察下列两个代数式的值的变化情况:

(1)随着n的值逐渐变大,两个代数式的值如何变化?

(2)估计一下,哪个代数式的值先超过100?

(学生积极发言,大多同学填得对)

[生]

[师]很好,大家计算得又对又快,接下来我们分组讨论:(1)、(2)问题,并总结.

[生]随着n的值逐渐变大,两个代数式的值也逐渐变大.

根据值的变化趋势,我估计:n2的值先超过100.

[师]对,代数式的值是由其所含的字母取值所确定的,并随字母取值的变化而变化,字母取不同的值,代数式的值可能不同,也可能相同.求出代数式的值后,根据值的变化趋势还可以进行预测、推断代数式所反映的规律.

下面我们来做练习,进一步体会本节课的内容:

Ⅲ.课堂练习

(一)课本p99随堂练习

1.人体血液的质量约占人体体重的6%~7.5%.

(1)如果某人体重是a千克,那么他的血液质量大约在什么范围内?

(2)亮亮的体重是35千克,他的血液质量大约在什么范围内?

(3)估计你自己的血液质量?

答案:(1)6%a千克~7.5%a千克

(2)亮亮的血液质量大约在2.1千克到2.625千克之间

(3)让学生估计计算一下

2.物体自由下落的高度h(米)和下落时间t(秒)的关系,在地球上大约是:

h=4.9t2,在月球上大约是:h=0.8t2.

(1)填写下表

(2)物体在哪儿下落得快?

(3)当h=20米时,比较物体在地球上和月球上自由下落所需的时间.

答案:(1)

(2)地球

(3)通过表格,估计当h=20米时,t(地球)≈2秒,t(月球)≈5秒

(二)试一试

1.当a=-1,-0.5,0,0.5,1,1.5,2时,a2-a是正数还是负数?当|a|>2时,估计a2-a是正数还是负数?

解:本题可列表进行比较.

通过估计得:当|a|>2时,a2-a>0

2.当a=-4,-3,-2,-1,1,2,3,4时,分别求出代数式a2+的值.你发现了什么?

解:

从计算的结果中发现:当a取互为相反数的值时,a2+的值相等;当|a|>1时,a的绝对值变大,a2+的值也变大.

Ⅳ.课时小结

通过本节课的学习,我们会求代数式的值,对于一个代数式,它所含的字母取不同的值时,所得代数式的值,一般也不同,所以在求代数式的值时,要注意解题步骤:(1)代入.

(2)计算.

Ⅴ.课后作业

(一)看课本p98;p99的读一读.

(二)课本习题3.31、2、3、4.

(三)(1)预习内容:p102~103

(2)预习提纲

1.项的系数和项的概念.

2.进一步理解字母表示数的意义.

Ⅵ.活动与探究

1.下面是两个数值转换机,请你输入五组数据,比较两个输出的结果,发现了什么?

根据上题的启示,你能设计出两个数值转换机来验证:a2-2ab+b2=(a-b)2吗?

过程:让学生根据题意,求代数式的值.然后讨论、总结,最后根据总结的规律与等式a2-2ab+b2=(a-b)2进行比较,设计两个数值转换机.

结果:通过输入数值,进行计算,发现了两个输出的结果相等,即:

a2+b2+2ab=(a+b)2

根据上题的启示,设计出如下的两个数值转换机,使得:a2-2ab+b2=(a-b)2.

2.已知=7,求的值.

过程:让学生审清题,不要盲目计算.从题中知:与正好是互为倒数,整体代入,问题可轻松解决.

结果:因为=7,所以:=.

所以:原式=2×7-×=13.

板书设计

§3.3代数式求值

一、“数值转换机”求值三、课堂练习

二、议一议

四、课时小结

规律五、课后作业

数与代数的教案篇6

一、教学目标

1.了解用字母表示数的意义,了解用字母表示数是代数的一个特点,是数学的一大进步。

2.了解代数式的概念,能说出一个代数式所表示的数量关系。

3.通过用字母表示数,学生学会抽象概括的思维方法。

4.通过实例,学生从中领悟到数学来源于实践,又反过来作用于实践的辩证原理。

5.通过用字母表示数,反映出数学中从特殊到一般的辩证关系,从而使学生受到初步的辩证观点的。

二、教学重点 难点用字母表示数的思想

三.教学工具小黑板 三角尺

四.教学方法 探究法 互动法

五、教学步骤

(一)创设情境,复习导入

1.设疑引入

师:中学数学课是从代数开始的,在代数课上都学习些什么呢?初中代数和小学数学有什么关系呢?请同学们看小黑板

师:图中有几种交通工具?

学生活动:观察图形,从中找出答案.(两种:飞机、火车)

?教法说明】图片展示联系实际易激发初一学生兴趣,使学生养成自己发现问题、解决问题的创造性思维习惯.

师:这列火车和飞机行驶的路程与时间如下表:

时间(时)

学生活动:先独立思考,再与同伴交流,互相讨论后一一回答问题.

教师活动:巡视查看,叫学生回答并正确评价,然后师生共同归纳:

(1) 加法交换律 ; 乘法交换律

(2) 交换两个加(或因)数,它们的和(或积)不变

(3) a + b = b + a ; ab = ba

?教法说明】由学生熟知的例子引出字母表示数学生易接受.由特殊到一般,也体现用字母表示数简明、普遍的优越性.注意①三个问题不要连续给出,要让学生个个击破,让学生有成功感,③向学生指明用字母表示数体现了数学中的简洁美,对称美,数学美.

(三)尝试反馈,巩固练习

师:你还学过哪些用字母表示数的运算律?能写出来吗?

学生活动:一个学生板演,其他学生写在练习本上(加法结合律、乘法结合律、分配律)

师:巡视检查,共同与学生评价板演.

?教法说明】通过亲自动手尝试,进一步理解用字母表示数的实际意义.

小结:(1)这些运算律中的字母可表示任何一个数;(2)用字母表示数能简明地揭示一般规律.

(四)变式训练,培养能力

师:除运算律能用字母表示外,还有许多同学们熟悉的实例,请看:(出示投影2)

1.如果用s表示路程(单位:km),t表示时间(单位:h),v表示速度阵位:km/h),那么有v=__________.

2.一个正方形的边长为a cm(厘米),这个正方形的周长是多少?面积是多少?用l表示周长(单位:cm),则l=_________,用s表示面积(单位:cm2),则s=_____________。

学生活动:在练习本上写出结果,两名学生板演,

教师活动:(1)常用的长度单位在小学大多用汉字表示,初中开始用字母表示:米(m),厘米(cm),毫米(mm),千米(km),相应的面积、体积单位则是平方米(m2),立方米(m3)等.(2)单位不能遗漏 。(3)尽可能化成最简形式

?教法说明】通过练习使学生亲自体会用字母表示数的.广泛性,为今后正确使用奠定基础.

(五)归纳小结

师:从以上各例可以看出,用字母表示数,可以把数或数量关系简明地表示出来,且具有一般性,因此,在公式与方程中都用字母表示数,这给运算带来了很大方便.今天的探索就到这里,刚才同学们表现都很出色,希望再接再励!

(六)课堂练习,巩固提高

1.一个三角形的底边为a m,这边上的高为h m,则这个三角形的面积是多少?用s表示面积(单位:m2),则s=_______;它和什么图形的面积公式相似?

2.用字母表示(一个或几个)

(1)有这样一个游戏:把你的出生年份乘以10000倍,再把你的出生月份乘以100倍,最后把你的出生日份乘以3,全部相加后,所得的和中就能够计算出你的出生日期。不信试一试;

(2)2 x 2 = 2 + 2; 3 +—— = 3 x ——; 4 x —— = 4 + —— ; 5 x—— =5 +——,。。。

(3) 3x3—1x1=8, 5x5—3x3=16,9x9—7x7=32, 15x15—13x13=56,。。。

3.—— + —— =——,—— + —— =——,—— + —— = ——,—— + —— = ——,。。。

五、布置作业

.《毕业综合练习册》 p14 例1 p16 第5题

六、板书设计

数与代数的教案6篇相关文章:

舞蹈腰的教案6篇

螃蟹歌的教案6篇

西餐礼仪的教案6篇

植物的种子教案6篇

听故事的教案6篇

励志的班会教案6篇

认知的教案6篇

小学统计的教案6篇

社会水的教案通用6篇

有趣的数字大班教案6篇

数与代数的教案6篇
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档文档为doc格式
点击下载本文文档
84109