数与代数教案7篇

时间:
loser
分享
下载本文

关注学生反馈并据此优化内容,是教案持续改进的有效方法,​,一份经过深思熟虑的教案,往往能让教师在课堂上更从容地应对各种情况,​,以下是66范文网小编精心为您推荐的数与代数教案7篇,供大家参考。

数与代数教案7篇

数与代数教案篇1

教学目标

1、使学生能把简单的与数量有关的词语用代数式表示出来;

2、初步培养学生观察、分析和抽象思维的能力

教学重点和难点

重点:把实际问题中的数量关系列成代数式?

难点:正确理解题意,从中找出数量关系里的运算顺序并能准确地写成代数式???

教学手段

现代课堂教学手段

教学方法

启发式教学

教学过程

(一)、从学生原有的认知结构提出问题

1、用代数式表示乙数:(投影)

(1)乙数比x大5;(x+5)

(2)乙数比x的2倍小3;(2x-3)

(3)乙数比x的倒数小7;(-7)

(4)乙数比x大16%?((1+16%)x)

(应用引导的方法启发学生解答本题)

2、在代数里,我们经常需要把用数字或字母叙述的一句话或一些计算关系式,列成代数式,正如上面的练习中的问题一样,这一点同学们已经比较熟悉了,但在代数式里也常常需要把用文字叙述的一句话或计算关系式(即日常生活语言)列成代数式?本节课我们就来一起学习这个问题?

(二)、讲授新课

例1用代数式表示乙数:

(1)乙数比甲数大5;(2)乙数比甲数的2倍小3;

(3)乙数比甲数的倒数小7;(4)乙数比甲数大16%?

分析:要确定的乙数,既然要与甲数做比较,那么就只有明确甲数是什么之后,才能确定乙数,因此写代数式以前需要把甲数具体设出来,才能解决欲求的乙数?

解:设甲数为x,则乙数的代数式为

(1)x+5(2)2x-3;(3)-7;(4)(1+16%)x?

(本题应由学生口答,教师板书完成)

最后,教师需指出:第4小题的答案也可写成x+16%x?

例2用代数式表示:

(1)甲乙两数和的2倍;

(2)甲数的与乙数的的差;

(3)甲乙两数的平方和;

(4)甲乙两数的和与甲乙两数的差的积;

(5)乙甲两数之和与乙甲两数的差的积?

分析:本题应首先把甲乙两数具体设出来,然后依条件写出代数式?

解:设甲数为a,乙数为b,则

(1)2(a+b);(2)a-b;(3)a2+b2;

(4)(a+b)(a-b);(5)(a+b)(b-a)或(b+a)(b-a)?

(本题应由学生口答,教师板书完成)

此时,教师指出:a与b的和,以及b与a的和都是指(a+b),这是因为加法有交换律?但a与b的差指的是(a-b),而b与a的差指的是(b-a)?两者明显不同,这就是说,用文字语言叙述的句子里应特别注意其运算顺序?

例3用代数式表示:

(1)被3整除得n的数;

(2)被5除商m余2的数?

分析本题时,可提出以下问题:

(1)被3整除得2的数是几?被3整除得3的数是几?被3整除得n的数如何表示?

(2)被5除商1余2的数是几?如何表示这个数?商2余2的数呢?商m余2的数呢?

解:(1)3n;(2)5m+2?

(这个例子直接为以后让学生用代数式表示任意一个偶数或奇数做准备)?

例4设字母a表示一个数,用代数式表示:

(1)这个数与5的和的3倍;(2)这个数与1的差的;

(3)这个数的5倍与7的和的一半;(4)这个数的平方与这个数的的和?

分析:启发学生,做分析练习?如第1小题可分解为“a与5的和”与“和的3倍”,先将“a与5的和”例成代数式“a+5”再将“和的3倍”列成代数式“3(a+5)”?

解:(1)3(a+5);(2)(a-1);(3)(5a+7);(4)a2+a?

(通过本例的讲解,应使学生逐步掌握把较复杂的数量关系分解为几个基本的数量关系,培养学生分析问题和解决问题的能力?)

例5设教室里座位的行数是m,用代数式表示:

(1)教室里每行的座位数比座位的行数多6,教室里总共有多少个座位?

(2)教室里座位的行数是每行座位数的,教室里总共有多少个座位?

分析本题时,可提出如下问题:

(1)教室里有6行座位,如果每行都有7个座位,那么这个教室总共有多少个座位呢?

(2)教室里有m行座位,如果每行都有7个座位,那么这个教室总共有多少个座位呢?

(3)通过上述问题的解答结果,你能找出其中的规律吗?(总座位数=每行的座位数×行数)

解:(1)m(m+6)个;(2)(m)m个?

(三)、课堂练习

1?设甲数为x,乙数为y,用代数式表示:(投影)

(1)甲数的2倍,与乙数的的和;(2)甲数的与乙数的3倍的差;

(3)甲乙两数之积与甲乙两数之和的差;(4)甲乙的差除以甲乙两数的积的商?

2?用代数式表示:

(1)比a与b的和小3的数;(2)比a与b的差的一半大1的数;

(3)比a除以b的商的3倍大8的数;(4)比a除b的商的3倍大8的数?

3?用代数式表示:

(1)与a-1的和是25的数;(2)与2b+1的积是9的数;

(3)与2x2的差是x的数;(4)除以(y+3)的商是y的数?

?(1)25-(a-1);(2);(3)2x2+2;(4)y(y+3)?〕

(四)、师生共同小结

首先,请学生回答:

1?怎样列代数式?2?列代数式的关键是什么?

其次,教师在学生回答上述问题的基础上,指出:对于较复杂的数量关系,应按下述规律列代数式:

(1)列代数式,要以不改变原题叙述的数量关系为准(代数式的形式不唯一);

(2)要善于把较复杂的数量关系,分解成几个基本的数量关系;

(3)把用日常生活语言叙述的数量关系,列成代数式,是为今后学习列方程解应用题做准备?要求学生一定要牢固掌握

练习设计

1、用代数式表示:

(1)体校里男生人数占学生总数的60%,女生人数是a,学生总数是多少?

(2)体校里男生人数是x,女生人数是y,教练人数与学生人数之比是1∶10,教练人数是多?

2、已知一个长方形的周长是24厘米,一边是a厘米,

求:(1)这个长方形另一边的长;(2)这个长方形的面积?

板书设计

§3.2代数式

(一)知识回顾(三)例题解析(五)课堂小结

例1、例2

(二)观察发现(四)课堂练习练习设计

教学后记

由于列代数式的内容既是本章的重点,又是本书的重点,同时也是学生学习过程中的一个难点,故在设计其教学过程时,注意所选例题及练习题由易到难,循序渐进,使学生逐步地掌握好这一内容,为今后的学习打下一个良好的基础?同时,也使学生的抽象思维能力得到初的培养。

数与代数教案篇2

【学习目标】

1、了解代数式的值的意义,能准确地求出代数式的值;

2、通过代入法求值培养学生良好的学习习惯和品质,提高运算能力与创新设计能力;

3、通过字母取不同的值的变化来认识世界发展变化及全面的观点.

【学习重点】能准确地求出代数式的值.

【学习难点】能准确地求出代数式的值.

【学习过程】

『问题情境、研讨』

情境一:某公园依地势摆若干个由大小相同的正方形构成的花坛,并在各正方形花坛的顶点与各边的中点布放盆花以营造节日气氛,

(1)填写下表

图形编号 (1) (2) (3) (4)

盆花数

(2)若要求第100个图案要用多少盆花,怎样去解答?

情境二:

(1)看图,如果小朋友的年龄为x岁,那么工人的年龄怎么表示?

(2)当x=9时,工人过了40岁了吗?

(3)想一想:当x=6时工人的年龄呢?

结论:根据问题的需要,用具体数值代替代数式中的字母,按照代数式中的运算关系,计算出的结果,就叫做这个代数式的值.

?例题讲评』 例1、 p/71议一议

?学生练习』 练一练:1、2

补充:(1)当x=1时,求代数式4 -x+x2的值.

(2)当a=2,b=-5时,求下列代数式的值:①(a+b)(a-b) ②a2-b2.

(3)当x+y=-2,xy=-4时,求代数式 - 的值.

3.3 代数式的值(1)随堂练习

评价_______________

1.当x=-1时,代数式|5x+2|和1-3x的值分别为,则m、n之间的关系为( )

a.mn b.m

2.当a=-2时,代数式-a2的值是( )

a.4 b.-2 c.-4 d.2

3.已知a-b=-2,则代数式3(a-b)2-b+a的值为( )

a.10 b.12 c.-10 d.-12

4.当a=2,b=-3,c=-4时,代数式b2-4ac的值为___________.

5.如果a+b=-3,ab=-4,代数式的 值为__________.

6.已知:x=-1,y=2,则(x-y)2-x3+x2y2 = .

7.已知:a= ,b= ,则a2-2ab+b2= .

8.当m-n=5,mn= -2时,则代数式(n-m)2-4mn= .

9.已知:x2+xy=1,xy-y2=-4,则x2+2xy-y2= .

10.若m2+3n-1的值为5,则代数式2m2+6n+1的值为 .

11.当a=-2,b=3时,求下列代数式的值:

⑴ 3(a-b) ⑵ 3a-3b ⑶ ( )2 ⑷

⑸ (a-b)2 ⑹ a2-2ab+b2 ⑺ (a+1)(b+1) ⑻ ab+a+b+1

12.已知x,y互为相反数,a,b互为倒数,t的绝对值为2,求代数式(x+y)20xx+(-ab)20xx+t2的值.

13.已知 =2,求代数式 的值.

数与代数教案篇3

教学内容:

苏教版六下p78~79“整理与反思”、“练习与实践”第1~5题。

教学目标:

进一步明确解决问题的一般步骤,能按一般步骤解决实际问题;了解小学阶段学习的解决问题的策略;能应用从条件或问题想起的策略分析数量关系并列式解决实际问题;能根据条件提出相应的问题。

能用从条件或问题想起的策略说明解决问题的思路,进一步体会实际问题数量之间的联系,培养学生分析、推理等思维能力和解决问题的能力。

进一步感受数学知识、方法在解决实际问题里的应用,体会解决问题策略的应用价值;培养勤于思考、善于思考的学习品质。

教学重点:

用从条件或问题想起的策略分析数量关系。

教学难点:

正确分析数量关系。

教学过程:

一、引入课题

谈话:今天的复习内容,是我们小学阶段学过的解决实际问题。通过今天的复习,要进一步掌握解决问题的一般步骤,整理并掌握学习过的解决问题的策略。对策略的应用,今天着重复习从条件想起、从问题想起分析数量关系的策略,能掌握分析方法,正确说明解决问题的思路并且解答实际问题,提高分析和解决问题的能力。

二、整理与反思

回顾讨论。

引导:大家先回顾一下学过的解决问题知识,同桌互相讨论、交流:解决实际问题的'一般步骤是怎样的?我们学习过解决问题的哪些策略?可以联系实际问题讨论一下,这些策略在解决什么问题时用过。

交流认识。

(1)交流解决问题的步骤。

提问:大家回顾了学过的解决问题的步骤和策略,能说说解决实际问题时的一般步骤是怎样的吗?

(2)交流解决问题的策略。

提问:我们学习过解决问题的哪些策略?可以结合举出一些例子来说一说。你认为学习解决问题的策略有什么作用?

指出:从条件或问题想起分析数量关系是基本策略,有些问题还要通过列表、画图或者列举、转化、假设的策略才能清楚地找到解决问题的方法。所以学习策略可以帮助我们更清楚地了解数量间的联系,找出解决问题的方法。

三、练习与实践

做“练习与实践”第1题。

(1)让学生独立阅读第(1)(2)题。

让学生分别说一说每题的条件和问题,说说两道题哪里不一样。

(2)引导:这两题你能怎样想的?自己先思考准备怎样想,再同桌互相说说你的想法,看看有没有不同的想法,要先求什么,再求什么。

提问:你能说说第(1)题可以怎样想吗?还能怎样想?指名几个学生从条件想起说一说是怎样想的。提问:第(2)题你是怎样想的?有不同的想法吗?指名几个学生从问题想起说一说是怎样想的。

(3)学生独立解答,指名板演。

检查列式过程,让学生说说各题的每一步求出的什么。

提问:两题的问题都是求长袖衬衫的单价,为什么解答过程不一样?(4)引导:通过上面两题的解答,你有哪些体会?

做“练习与实践”第2题。

(1)让学生独立读题,了解题意。

引导学生观察图形,结合图形说说第(1)题小芳走过的路线是怎样的,第(2)题两人是怎样行走的。

引导:先看看小芳和小军的速度各是多少,想想两人大致在哪里相遇,在图上用一个点表示出来。交流:你估计大致在哪里相遇,怎样想的?

(2)让学生列式解答两个问题,教师巡视、指导。

①交流:第(1)小题是怎样列式的?这样列式是怎样想的?有没有不同的列式?这样列式又是怎样想的?

说明:解答实际问题,有时有不同的解答方法,这是因为分析方法不同,解决问题的过程或方法就可能不一样。

②交流:第(2)题怎样列式?这是根据什么数量关系列式的?也有不同的解法吗?这又是根据什么数量关系列式的?追问:这两种解法有什么联系?

解答上面两题,都和哪个常见的数量关系有关?

做“练习与实践”第4题。

让学生读题,说说从表格里的对应数值能知道什么,要解决什么问题。

引导:你能解决这个问题吗?自己想办法解答。交流:你是怎样解答的?这是怎样想的?还有不同的解答方法吗?这又是怎样想的?

提问:这两种解法思路有什么不同?能说说两种解法分别是先求的什么、再求的什么吗?

做“练习与实践”第5题。

让学生独立读题,摘录整理条件和问题。交流:你是怎样整理的?提问:根据整理的条件和问题,这题可以怎样想?说一说你的想法。追问:你认为整理的条件和问题,对于解决问题有什么好处?

四、总结与作业

总结交流。今天复习了解决问题的哪些内容?通过整理与练习,你有哪些收获?

布置作业。完成“练习与实践”第3题和第5题。

数与代数教案篇4

?学习目标】

1、了解代数式,单项式、单项式的系数、次数,多项式、多项式的项、次数,整式概念;

2、能用代数式表示简单问题的数量关系;

3、能解释一些简单代数式的实际背景或几何背景.

?学习重点】对代数式意义的理解,分析问题中的数量关系,列出代数式.

?学习难点】正确规范书写代数式和叙述代数式的意义.

?学习过程】

?问题情境、研讨』

情境一:小明去买苹果,苹果每千克1.5元,他买了a 千克.

问题1、一共用去多少钱?

问题2.学生模仿列举日常生活中的例子,其他学生给以解答.(得到以下式子:30a、9b、2ab+2bc+2ac、abc)

引导学生观察:30a、9b、2ab+2bc+2ac、abc、。我们把这些式子都称为代数式.

引入代数式定义:像n、-2 、 、0.8a、 、2n +500、abc、2ab+2bc +2ac等式子都是代数式。单独一个数或一个字母也是代数式.

情境二:让学生先观察:30a 、 9b、 、0.8a、abc、.

问题:你发现了什么?它们有什么共同的特征?(引导学生说出它们都是字母与数相乘。)

(1)引入单项式定义:像0.9a,0.8b,2a,2a2,151.5%m等都是数与字母的积,这样的代数式叫单项式。单独一个数或一个字母也是单项式.

(2)单项式中的数字因数叫做这个单项式的系数.

(3)单项式中所有字母的指数的和叫做它的次数.

让学生列举单项式,并说出各单项式的系数与次数(巩固所学概念).

注意:系数与次数是一个数,应与字母区分.

情境三:①薯片每袋a 元, 9折优惠,虾条每袋b 元,8折优惠,两种食品各买一袋共需几元?

②一个长方形的宽是a m ,长是宽的2倍,这个长方形的长是多少?周长是多少?

③环形花坛铺草坪,大圆半径为rm,小圆半径为rm,需要草皮多少平方米?

问题1.观察①、②、③三题的结果?它们有什么共同点?

引入多项式:(1)几个单项式的和叫做多项式.其中的每个单项式叫做多项式的一个项.

(2)次数最高项的次数叫做这个多项式的次数。

问题2.你能举一个次数是2,项数也是2的多项式吗?

(学生各抒己见,教师及时鼓励。然后小结:单项式和多项式都是代数式.

引出整式:单项式和多项式统称整式.)

?例题讲评』 p63例题

?学生练习』 p67议一议 16

3.2 代数式随堂练习

评价_______________

1.n箱苹果重p千克,每箱重________千克.

2.甲同学身高a厘米,乙同学比甲同学高6厘米,则乙同学身高为______厘米.

3.全校学生总数是x,其中女生占40%,则女生人数是________.

4.一个两位数,个位数是x,十位数是y,这个两位数为________,如果个位数字与十位数字对调,所得的两位数是_________.

5.在边长为a的正方形内,挖出一个底为b,高为 a的正三角形,则剩下的面积为________.

6.王洁同学买m本练习册花了n元,那么买2本练习册要______元.

7.如果陈秀娟同学用v千米/时的速度走完路程为9千米的路,那么需_______小时.

8.在西部大开发的过程中,为了保护环境,促进生态平衡,国家计划以每年10%的速度栽树绿化,如果第一年植树绿化是a公顷,那么,到第三年的植树绿化为_______公顷.

9.12345是一个五位数,将数字1放到右边构成新的五位数23451,如果x是一个四位数,现在把数字1放在它的右边,得到一个五位数,用代数式如何表示这个新五位数?若将1放在左边,也可以得到一个五位数,又如何表示?

10.我们知道:

1+3=4=22;

1+3+5=9=32;

1+3+5+7=16=42;

1+3+5+7+9=25=52.

根据前面各式规律,可以猜测:

1+3+5+7+9++(2n-1)=________.(其中n为自然数).

11.解释代数式300-2a的实际意义.

数与代数教案篇5

教学目标

知识与技能:

1.会求代数式的值,会利用代数式求值判断代数式所反应的规律;

2.能利用求代数式的值解决较简单的实际问题;

过程与方法:

3.通过求代数式的值,体会代数式实际上是由计算程序反映的一种数量间的关系;

4.将不同的数代入同一代数式,求出相应的值,能够从所得代数式的值来判断代数式所反映的规律,体会抽象的代数式与实际数量关系之间的关系.

情感态度价值观:

5.通过代数式求值,感受数学中的程序化和抽象性,感受抽象的字母和具体的数之间的关系,进一步理解字母表示数的意义,进一步增强符号感.

教学重点

理解代数式的意义,会求代数式的值

教学难点

利用代数式求值推断代数式所反映的规律

教学方法

引导、探究法,即引导学生发现规律,使其在探究过程中掌握知识

教学准备

多媒体,或投影仪,胶片

课时安排

1课时

教学过程

Ⅰ.巧设情景问题,引入课题

[师]我们在探讨了代数式之后,不仅能用字母与代数式表示数量关系,还能解释一些代数式的实际背景或几何意义.

下面我们来看一组数值转换机:(出示投影片§3.3a),大家想一想,做一做.

下面是一组数值转换机,写出图1的输出结果,找出图2的转换步骤:

[生1]图1的输出结果是:6x-3.

图2的转换步骤:-3、×6.

[师]这位同学书写的跟你们的一样吗?

[生齐声]一样.

[师]很好,同学们写得很正确,这两个数值转换机由于转换的步骤不一样,因此输出的代数式也不一样.

我们已经知道,表示数的字母具有任意性和确定性.当给出代数式时,如:6x-3,字母x可以取任何有理数,当给出未知数的值时,如x=5时,求6x-3的值,这时,x只能是5这个确定的数.

今天我们就来研究第三节:代数式求值.

Ⅱ.讲授新课

当我们把一些数输入“数值转换机”时,通过一个算法,相应得就会得到一些数值.下面大家来做一做,填下表.(出示投影片§3.3b)

输入-2-

00.26

4.5

图1输出

图2输出

(学生计算,使他们认识到代数式求值就是转换过程或是某种计算).

[师]大家在运算时一定要注意:要按转换的步骤进行.填出结果了吗?……来同桌间相互检查.××同学说说你的结果.

[生]

[师]同学们做得都不错,很好,下面,我们来比赛一下,看谁做得又对又快.(出示投影片§3.3c)

议一议:

填写下表,并观察下列两个代数式的值的变化情况:

(1)随着n的值逐渐变大,两个代数式的值如何变化?

(2)估计一下,哪个代数式的值先超过100?

(学生积极发言,大多同学填得对)

[生]

[师]很好,大家计算得又对又快,接下来我们分组讨论:(1)、(2)问题,并总结.

[生]随着n的值逐渐变大,两个代数式的值也逐渐变大.

根据值的变化趋势,我估计:n2的值先超过100.

[师]对,代数式的值是由其所含的字母取值所确定的,并随字母取值的变化而变化,字母取不同的值,代数式的值可能不同,也可能相同.求出代数式的值后,根据值的变化趋势还可以进行预测、推断代数式所反映的规律.

下面我们来做练习,进一步体会本节课的内容:

Ⅲ.课堂练习

(一)课本p99随堂练习

1.人体血液的质量约占人体体重的6%~7.5%.

(1)如果某人体重是a千克,那么他的血液质量大约在什么范围内?

(2)亮亮的体重是35千克,他的血液质量大约在什么范围内?

(3)估计你自己的血液质量?

答案:(1)6%a千克~7.5%a千克

(2)亮亮的血液质量大约在2.1千克到2.625千克之间

(3)让学生估计计算一下

2.物体自由下落的高度h(米)和下落时间t(秒)的关系,在地球上大约是:

h=4.9t2,在月球上大约是:h=0.8t2.

(1)填写下表

(2)物体在哪儿下落得快?

(3)当h=20米时,比较物体在地球上和月球上自由下落所需的时间.

答案:(1)

(2)地球

(3)通过表格,估计当h=20米时,t(地球)≈2秒,t(月球)≈5秒

(二)试一试

1.当a=-1,-0.5,0,0.5,1,1.5,2时,a2-a是正数还是负数?当|a|>2时,估计a2-a是正数还是负数?

解:本题可列表进行比较.

通过估计得:当|a|>2时,a2-a>0

2.当a=-4,-3,-2,-1,1,2,3,4时,分别求出代数式a2+的值.你发现了什么?

解:

从计算的结果中发现:当a取互为相反数的值时,a2+的值相等;当|a|>1时,a的绝对值变大,a2+的值也变大.

Ⅳ.课时小结

通过本节课的学习,我们会求代数式的值,对于一个代数式,它所含的字母取不同的值时,所得代数式的值,一般也不同,所以在求代数式的值时,要注意解题步骤:(1)代入.

(2)计算.

Ⅴ.课后作业

(一)看课本p98;p99的读一读.

(二)课本习题3.31、2、3、4.

(三)(1)预习内容:p102~103

(2)预习提纲

1.项的系数和项的概念.

2.进一步理解字母表示数的意义.

Ⅵ.活动与探究

1.下面是两个数值转换机,请你输入五组数据,比较两个输出的结果,发现了什么?

根据上题的启示,你能设计出两个数值转换机来验证:a2-2ab+b2=(a-b)2吗?

过程:让学生根据题意,求代数式的值.然后讨论、总结,最后根据总结的规律与等式a2-2ab+b2=(a-b)2进行比较,设计两个数值转换机.

结果:通过输入数值,进行计算,发现了两个输出的结果相等,即:

a2+b2+2ab=(a+b)2

根据上题的启示,设计出如下的两个数值转换机,使得:a2-2ab+b2=(a-b)2.

2.已知=7,求的值.

过程:让学生审清题,不要盲目计算.从题中知:与正好是互为倒数,整体代入,问题可轻松解决.

结果:因为=7,所以:=.

所以:原式=2×7-×=13.

板书设计

§3.3代数式求值

一、“数值转换机”求值三、课堂练习

二、议一议

四、课时小结

规律五、课后作业

数与代数教案篇6

教学目标:

1.在整理与复习中回顾整个第一学段的相关知识。

2.结合生活中的实际运用复习有关万以内数的数的读写法,比较大小等,培养学生的数感。

3.会计算万以内有加减法,小数和分数的加减法,会计算一位数乘三位数、两位数乘两位数的乘法运算,会一位数除三位数的除法运算。以及两步运算为主的四则混合运算和解决简单的实际问题。

教学重点:

巩固万以内数的读写法,会比较数的大小;结合生活实际,会估一估。准确地进行计算。

教学难点:

比较数的大小,掌握数的基本计算。

教学过程:

一、我的`成长足迹。

1.师:同学们,三年的学习生活不知不觉已经过去了,我相信你们肯定有很多话要对同伴和老师说一说吧,谁愿意说一说三年来你在数学上有了哪些收获?

2.学生发表自己的看法和意见。

3.作品欣赏。

将上学期在数学活动周中获奖的优秀学生作品《数学小报》进行展示。

学生的优秀作业本进行展示。

4.学生自评、互评。

自我评价:说一说自己三年来在课堂上、作业方面、数学兴趣等等方面的优点与不足,以及说一说自己在学习过程中的体会与进步。

同桌互评:同桌之间或者比较了解的同学之间进行互相评价。

二、计算。

1.简单地复习有关加减乘除的有关计算方法,进行简单的练习。

2.让学生说一说在计算过程中应注意的地方或者说有什么地方要提醒其他同学的。

学生发??

教师小结,把学生作业中错误率比较高的题目和类型进行讲解。

3.完成书本上课后习题:要求直接写出下面各题的得数。

学生独立完成,完成后教师要求学生进行检查,完成后让学生说一说自己是怎么检查的。从而提高学生检查的意识和能力。

二、基本练习。

1.在你认为正确的答案下画钩。

(1)两个数相乘,积比1000大一些,比20xx少得多,可能是( );

3270 4819 2151

(2)38与23的积可能是:

863 874 594

这题可以让学生说一说自己是怎么判断的?然后老师进行概括。如第二题,可以先判断积是个位是几,因为两个乘数的个数是8和3,所以积的个位肯定是4,因此排除863,再进行估算选出合适的答案。

2.找规律填数。

(1)20xx 2090 20xx ( ) ( )

(2)1200 1100 1000 ( ) ( )

先找到一组数之间的关系,然后根据规律填写下一个数。

3.在括号内填上>、<或=。

认识符号>、<、=的意义,能够用符号和词语来描述万以内数的大小;对于常见的量的单位,能进行简单的换算。

4.复习克、千克质量单位。

让学生回顾所学的有关质量单位之间的关系。

让学生回想一下:哪些物体大约重1克、1千克。

在具体生活情境中,感受并认识克、千克。

5. 1200张纸大约有多厚?1200名学生大约能组成多少个班级?1200步大约多长?

解决这类问题,一般先确定一个标准,再估算。

第一个问题:100张纸大约厚1厘米,1200张纸大约厚12厘米;

第二个问题:一个班大约40人,1200名学生大约能组成30个班。

第三个问题:10步大约7米,1200步大约1207=840米。

不同的纸张厚度不同,不同的人步长也不一样,实际教学时可请学生选实际量一量,再估算。

总结:

比较分数大小:

同分母分数,分子大的分数就大,分子小的分数就小;

同分子分数,分母大的分数反而小,分母小的分数反而大。

代数运算法则:

加法交换律;a+b=b+a

乘法交换律:ab=ba

加法结合律:a+(b+c)=(a+b)+c

乘法结合律:a(bc)=(ab)c

分配律:a(b+c)=ab+ac

作业:

1.直接写出得数。

1028+998= 20xx-619= 1830= 96060= 0.37+0.73=

1.4-0.5= 0.30.04= 80.01= 2.29229= 82+62=

+ = 20-1 = = 1 = 9.1 =

0 = 12.2+8%= 812.5%= 50%= 1010%=

2.脱式计算,能简算的要简算。

800-(287+365) 71799+717 20xx-172832

88434+1721 1593-[(4419+44)5] 125208050

139+159+179 1040.25 0.32+11.7+4.68

数与代数教案篇7

1.教学目标:

1) 知识与技能目标:

① 让学生经历代数式概念的产生过程,了解代数式的概念.

② 使学生会用代数式表示简单的数量关系,并能运用代数式这一数学模型去表示和解释简单实际问题中的数量关系.

2) 过程与方法目标:

① 使学生在探索与创造的数学学习活动中,学会与人合作、与人交流.

② 通过自主探索、小组合作、互相交流数学活动,让学生体验如何进行数学学习,变“学会”为“会学”.

3) 情感与态度目标:

① 渗透代数式的模型思想,让学生体会数学知识来源于实践又反作用于实践的辩证唯物主义思想,进一步发展符号感.

② 激发学生探究数学的兴趣,发扬合作学习的精神,养成踏实细致、独立思考、严谨科学的学习习惯.

③ 利用实际情境,渗透爱国主义和乡土文化,培养学生关注生活,热爱数学的情感,增进学生对数学的理解和应用数学的信心.

2、教学重、难点:

1) 教学重点:代数式的概念和列代数式. 突出重点措施:

(1)通过比较——判别——交流——构造等环节,让学生经历代数式概念的产生过程,使学生在过程中获得对数学概念的理解.

(2)通过“根据语言表述的数量关系列代数式”和“把代数式表示的数量关系

2) 教学难点:用代数式表示实际问题中的数量关系. 突破难点策略:

(1)分三步分散难点

①引入时设计大量学生身边的`实际情景,让学生体会到代数式存在的普遍性.

②让学生给自己构造的一些简单代数式赋予实际意义,使学生进一步体会到代数式的模型思想。

③通过“开动脑筋齐探索”和“返程路上解疑问”等环节进一步提高学生分析、解决实际问题的能力.

(2)通过flash演示情景,小组合作交流等形式突破代数式的应用瓶颈.用语言表述”两方面进行对比、观察、归纳,让学生获得必需的数学经验.

数与代数教案7篇相关文章:

大班教案健康教案精选7篇

教案安全中班教案推荐7篇

民间教案游戏教案精选7篇

安全教案防溺水教案优质7篇

防拐骗安全教案教案7篇

教案安全中班教案通用7篇

安全课教案大班教案7篇

秋天的歌教案语言教案最新7篇

动物的尾巴教案中班科学教案7篇

教案幼儿园小班数学教案7篇

数与代数教案7篇
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档文档为doc格式
点击下载本文文档
84110