教案可以根据学生的学习进度,合理调整教学内容和难度,编写多样化的教案可以满足学生的不同学习需求和学习风格,以下是66范文网小编精心为您推荐的勾股定理的教案8篇,供大家参考。
勾股定理的教案篇1
一、教案背景概述:
教材分析:勾股定理是直角三角形的重要性质,它把三角形有一个直角的"形"的特点,转化为三边之间的"数"的关系,它是数形结合的典范。它可以解决许多直角三角形中的计算问题,它是直角三角形特有的性质,是初中数学教学内容重点之一。本节课的重点是发现勾股定理,难点是说明勾股定理的正确性。
学生分析:
1、考虑到三角尺学生天天在用,较为熟悉,但真正能仔细研究过三角尺的同学并不多,通过这样的情景设计,能非常简单地将学生的注意力引向本节课的本质。
2、以与勾股定理有关的人文历史知识为背景展开对直角三角形三边关系的讨论,能激发学生的学习兴趣。
设计理念:本教案以学生手中舞动的三角尺为知识背景展开,以勾股定理在古今中外的发展史为主线贯穿课堂始终,让学生对勾股定理的发展过程有所了解,让他们感受勾股定理的丰富文化内涵,体验勾股定理的探索和运用过程,激发学生学习数学的兴趣,特别是通过向学生介绍我国古代在勾股定理研究和运用方面的成就,激发学生热爱祖国,热爱祖国悠久文化的思想感情,培养他们的民族自豪感和探究创新的精神。
教学目标:
1、经历用面积割、补法探索勾股定理的过程,培养学生主动探究意识,发展合理推理能力,体现数形结合思想。
2、经历用多种割、补图形的方法验证勾股定理的过程,发展用数学的眼光观察现实世界和有条理地思考能力以及语言表达能力等,感受勾股定理的文化价值。
3、培养学生学习数学的兴趣和爱国热情。
4、欣赏设计图形美。
二、教案运行描述:
教学准备阶段:
学生准备:正方形网格纸若干,全等的直角三角形纸片若干,彩笔、直角三角尺、铅笔等。
老师准备:毕达哥拉斯、赵爽、刘徽等证明勾股定理的图片以及其它有关人物历史资料等投影图片。
三、教学流程:
(一)引入
同学们,当你每天手握三角尺绘制自己的宏伟蓝图时,你是否想过:他们的边有什么关系呢?今天我们来探索这一小秘密。(板书课题:探索直角三角形三边关系)
(二)实验探究
1、取方格纸片,在上面先设计任意格点直角三角形,再以它们的每一边分别向三角形外作正方形,如图1
设网格正方形的边长为1,直角三角形的直角边分别为a、b ,斜边为c ,观察并计算每个正方形的面积,以四人小组为单位填写下表:
(讨论难点:以斜边为边的正方形的面积找法)
交流后得出一般结论: (用关于a、b、c的式子表示)
(三)探索所得结论的正确性
当直角三角形的直角边分别为a 、b,斜边为c时, 是否一定成立?
1、指导学生运用拼图、或正方形网格纸构造或设计合理分割(或补全)图形,去探索本结论的正确性:(以四人小组为单位进行)
在学生所创作图形中选择有代表性的割、补图,展示出来交流讲解,并引导学生进行说理:
如图2(用补的方法说明)
师介绍:(出示图片)毕达哥拉斯,公元前约500年左右,古西腊一位哲学家、数学家。一天,他应邀到一位朋友家做客,他一进朋友家门就被朋友家的豪华的方形大理石地砖的形状深深吸引住了,于是他立刻找来尺子和笔又量又画,他发现以每块大理石地砖的相邻两直角边向三角形外作正方形,它们的面积和等于以这块大理石地砖的对角线为边向形外作正方形的面积。于是他回到家里立刻对他的这一发现进行了探究证明……,终获成功。后来西方人们为了纪念他的这一发现,将这一定理命名为"毕达哥拉斯定理"。1952年,希腊政府为了纪念这位伟大的数学家,特别选用他设计的这种图形为主图发行了一枚纪念邮票。(见课本52页彩图2—1,欣赏图片)
如图3(用割的方法去探索)
师介绍: (出示图片) 中国古代数学家们很早就发现并运用这个结论。早在公元前2000年左右,大禹治水时期,就曾经用过此方法测量土地的`等高差,公元前1100年左右,西周的数学家商高就曾用"勾三、股四、弦五"测量土地,他们对这一结论的运用至少比古希腊人早500多年。公元200年左右,三国时期吴国数学家赵爽曾构造此图验证了这一结论的正确性。他的这个证明,可谓别具匠心,极富创新意识,他用几何图形的割、来证明代数式之间的相等关系,既严密,又直观,为中国古代以"形"证"数",形、数统一的独特风格树立了一个典范。他是我国有记载以来第一个证明这一结论的数学家。我国数学家们为了纪念我国在这方面的数学成就,将这一结论命名为"勾股定理"。(点题)
20xx年,世界数学家大会在中国北京召开,当时选用这个图案作为会场主图,它标志着我国古代数学的辉煌成就。(见课本50页彩图,欣赏图片)
如图4(构造新图形的方法去探索)
师介绍:(出示图片)勾股定理是数学史上的一颗璀璨明珠,它的证明在数学史上屡创奇迹,从毕达哥拉斯到现在,吸引着世界上无数的数学家、物理学家、数学爱好者对它的探究,甚至政界要人——美国第20任总统加菲尔德,也加入到对它的探索证明中,如图是他当年设计的证明方法。据说至今已经找到的证明方法有四百多种,且每年还会有所增加。(若有时间可以继续出示学生中有价值的图片进行讨论),有兴趣的同学课后可以继续探索……
四、总结:
本节课学习的勾股定理用语言叙说为:
五、作业:
1、继续收集、整理有关勾股定理的证明方的探索问题并交流。
2、探索勾股定理的运用。
勾股定理的教案篇2
教学课题:
勾股定理的应用
教学时间(日期、课时):
教材分析:
学情分析:
教学目标:
能运用勾股定理及直角三角形的判定条件解决实际问题.
在运用勾股定理解决实际问题的过程中,感受数学的“转化” 思想(把解斜三角形问题转化为解直角三角形的问题),进一步发展有条理思考和有条理表达的能力,体会数学的应用价值.
教学准备
?数学学与练》
集体备课意见和主要参考资料
页边批注
教学过程
一.新课导入
本课时的教学内容是勾股定理在实际中的应用。除课本提供的情境外,教学中可以根据实际情况另行设计一些具体情境,也利用课本提供的素材组织数学活动。比如,把课本例2改编为开放式的问题情境:
一架长为10m的梯子斜靠在墙上,梯子的顶端距地面的垂直距离为8m.如果梯子的顶端下滑0.5m,你认为梯子的底端会发生什么变化?与同学交流.
创设学生身边的问题情境,为每一个学生提供探索的空间,有利于发挥学生的主体性;这样的问题学生常常会从自己的生活经验出发,产生不同的思考方法和结论(教学中学生可能的结论有:
底端也滑动0.5m;如果梯子的顶端滑到地面上,梯子的顶端则滑动8m,估计梯子底端的滑动小于8m,所以梯子的顶端下滑0.5m,它的底端的滑动小于0.5m;构造直角三角形,运用勾股定理计算梯子滑动前、后底端到墙的垂直距离的差,得出梯子底端滑动约0.61m的结论等)。
通过与同学交流,完善各自的想法,有利于学生主动地把实际问题转化为数学问题,从中感受用数学的眼光审视客观世界的乐趣.
二.新课讲授
问题一在上面的情境中,如果梯子的顶端下滑1m,那么梯子的底端滑动多少米?
组织学生尝试用勾股定理解决问题,对有困难的学生教师给予及时的帮助和指导.
问题二从上面所获得的信息中,你对梯子下滑的变化过程有进一步的思考吗?与同学交流.
设计问题二促使学生能主动积极地从数学的角度思考实际问题.教学中学生可能会有多种思考.比如,
①这个变化过程中,梯子底端滑动的距离总比顶端下滑的距离大;
②因为梯子顶端下滑到地面时,顶端下滑了8m,而底端只滑动4m,所以这个变化过程中,梯子底端滑动的距离不一定比顶端下滑的距离大;
③由勾股数可知,当梯子顶端下滑到离地面的垂直距离为6m,即顶端下滑2m时,底端到墙的垂直距离是8m,即底端电滑动2m等。
教学中不要把寻找规律作为这个探索活动的目标,应让学生进行充分的交流,使学生逐步学会运用数学的眼光去审视客观世界,从不同的角度去思考问题,获得一些研究问题的经验和方法.
3.例题教学
课本的例1是勾股定理的简单应用,教学中可根据教学的实际情况补充一些实际应用问题,把课本习题2.7第4题作为补充例题.通过这个问题的讨论,把“32+b2=c2”看作一个方程,设折断处离地面x尺,依据问题给出的条件就把它转化为熟悉的会解的一元二次方程32+x2=(10—x)2,从中可以让学生感受数学的“转化”思想,进一步了解勾股定理的悠久历史和我国古代人民的聪明才智.
三.巩固练习
1.甲、乙两人同时从同一地点出发,甲往东走了4km,乙往南走了6km,这时甲、乙两人相距__________km.
2.如图,一圆柱高8cm,底面半径2cm,一只蚂蚁从点a爬到点b处吃食,要爬行的最短路程(取3)是().
(a)20cm(b)10cm(c)14cm(d)无法确定
3.如图,一块草坪的形状为四边形abcd,其中∠b=90°,ab=3m,bc=4m,cd=12m,ad=13m.求这块草坪的面积.
四.小结
我们知道勾股定理揭示了直角三角形的三边之间的数量关系,已知直角三角形中的任意两边就可以依据勾股定理求出第三边.从应用勾股定理解决实际问题中,我们进一步认识到把直角三角形中三边关系“a2+b2=c2”看成一个方程,只要依据问题的条件把它转化为我们会解的方程,就把解实际问题转化为解方程.
勾股定理的教案篇3
一、教学目标
通过对几种常见的勾股定理验证方法,进行分析和欣赏。理解数
学知识之间的内在联系,体会数形结合的思想方法,进一步感悟勾股定理的文化价值。
通过拼图活动,尝试验证勾股定理,培养学生的动手实践和创新能力。
(3)让学生经历自主探究、合作交流、观察比较、计算推理、动手操作等过程,获得一些研究问题的方法,取得成功和克服困难的经验,培养学生良好的思维品质,增进他们数学学习的信心。
二、教学的重、难点
重点:探索和验证勾股定理的过程
难点:
(1)“数形结合”思想方法的理解和应用
通过拼图,探求验证勾股定理的新方法
三、学情分析
八年级的学生已具备一定的生活经验,对新事物容易产生兴趣,动手实践能力也比较强,在班级上已初步形成合作交流,勇于探索与实践的良好班风,估计本节课的学习中学生能够在教师的引导和点拨下自主探索归纳勾股定理。
四、教学程序分析
(一)导入新课
介绍勾股世界
两千多年前,古希腊有个毕达哥拉斯学派,他们首先发现了勾股定理,因此在国外人们通常称勾股定理为毕达哥拉斯定理。为了纪念毕达哥拉斯学派,1955年希腊曾经发行了一枚纪念邮票。
我国是最早了解勾股定理的国家之一。早在三千多年前,周朝数学家商高就提出,将一根直尺折成一个直角,如果勾等于三,股等于四,那么弦就等于五,即“勾三、股四、弦五”,它被记载于我国古代著名的数学著作《周髀算经》中。
(二)讲解新课
1、探索活动一:
观察下图,并回答问题:
(1)观察图1
正方形a中含有
个小方格,即a的面积是
个单位面积;
正方形b中含有
个小方格,即b的面积是
个单位面积;
正方形c中含有
个小方格,即c的面积是
个单位面积。
(2)在图2、图3中,正方形a、b、c中各含有多少个小方格?它们的面积各是多少?你是如何得到上述结果的?与同伴交流。
(3)请将上述结果填入下表,你能发现正方形a,b,c,的面积关系吗?
a的面积
(单位面积)
b的面积
(单位面积)
c的面积
(单位面积)
图1
9
9
18
图2
4
4
8
2、探索活动二:
(1)观察图3,图4
并填写下表:
a的面积
(单位面积)
b的面积
(单位面积)
c的面积
(单位面积)
图3
16
9
25
图4
4
9
13
你是怎样得到上面结果的?与同伴交流。
(2)三个正方形a,b,c的面积之间的关系?
3、议一议(合作交流,验证发现)
(1)你能发现直角三角形三边长度之间存在什么关系吗?
勾股定理:如果直角三角形两直角边分别为a、b,斜边为c
,那么a2+b2=c2。
即直角三角形两直角边的平方和等于斜边的平方。
(2)我们怎么证明这个定理呢?
教师指导第一种证明方法,学生合作探究第二种证明方法。
可得:
想一想:大正方形的面积该怎样表示?
想一想:这四个直角三角形还能怎样拼?
可得:
4、例题分析
如图,一根电线杆在离地面5米处断裂,电线杆顶部落在离电线杆底部12米处,电线杆折断之前有多高?
解:∵,
∴在中,
,根据勾股定理,
∴电线杆折断之前的高度=bc+ab=5米+13米=18米
(三)课堂小结
勾股定理从边的角度刻画了直角三角形的又一个特征.人类对勾股定理的研究已有近3000年的历史,在西方,勾股定理又被称为“毕达哥拉斯定理”、“百牛定理”、“驴桥定理”等等
.
(四)布置作业
收集有关勾股定理的证明方法,下节课展示、交流.
五、板书设计
勾股定理的探索与证明
做一做
勾股定理
议一议
(直角三角形的直角边分别为a、b,斜边为c,则a2+b2=c2)
六、课后反思
?新课程标准》指出:“数学教学是数学活动的教学。”数学实验在现阶段的数学教学中还没有普及与推广,实际上,通过学生的合作探究、动手实践、归纳证明等活动,让数学课堂生动起来,也让学生感觉数学是可以动手做实验的,提高了学生学习数学的兴趣与激情。本节课,我充分利用学生动手能力强、表现欲高的特点,在充裕的时间里,放手让学生动手操作,自己归纳与分析。最后得出结论。我认为本节课是成功的,一方面体现了学生的主体地位,另一方面让实验走进了数学课堂,真正体现了实验的巨大作用。
勾股定理的教案篇4
学习目标
1、通过拼图,用面积的方法说明勾股定理的正确性.
2.探索勾股定理的过程,发展合情推理的能力,体会数型结合的思想。
重点难点
或学习建议学习重点:用面积的方法说明勾股定理的正确.
学习难点:勾股定理的应用.
学习过程教师
二次备课栏
自学准备与知识导学:
这是1955年希腊为纪念一位数学家曾经发行的邮票。
邮票上的图案是根据一个著名的数学定理设计的。
学习交流与问题研讨:
1、探索
问题:分别以图中的直角三角形三边为边向三角形外
作正方形,小方格的面积看做1,求这三个正方形的面积?
s正方形bced=s正方形acfg=s正方形abhi=
发现:
2、实验
在下面的方格纸上,任意画几个顶点都在格点上的三角形;并分别以这个三角形的各边为一边向三角形外做正方形并计算出正方形的面积。
请完成下表:
s正方形bceds正方形acfgs正方形abhis正方形bced、s正方形acfg、s正方形abhi的关系
112
145
41620
91625
发现:
如何用直角三角形的三边长来表示这个结论?
这个结论就是我们今天要学习的勾股定理:
如图:我国古代把直角三角形中,较短的直角边叫做“勾”,较长的直角边叫做“股”,斜边叫做“弦”,所以勾股定理可表示为:弦股还可以表示为:或勾
练习检测与拓展延伸:
练习1、求下列直角三角形中未知边的长
练习2、下列各图中所示的线段的长度或正方形的面积为多少。
(注:下列各图中的三角形均为直角三角形)
例1、如图,在四边形中,∠,∠,,求.
检测:
1、在rt△abc中,∠c=90°(1)若a=5,b=12,则c=________;
(2)b=8,c=17,则s△abc=________。
2、在rt△abc中,∠c=90,周长为60,斜边与一条直角边之比为13∶5,则这个三角形三边长分别是()
a、5、4、3、;b、13、12、5;c、10、8、6;d、26、24、10
3、若等腰三角形中相等的两边长为10cm,第三边长为16cm,那么第三边上的高为()
a.12cmb.10cmc.8cmd.6cm
4、要登上8m高的建筑物,为了安全需要,需使梯子底端离建筑物6m,至少需要多长的梯子?(画出示意图)
5、飞机在空中水平飞行,某一时刻刚好飞到一个男孩头顶正上方4千米处,过了20秒,飞机距离这个男孩5千米,飞机每小时飞行多少千米?
课后反思或经验总结:
1、什么叫勾股定理;
2、什么样的三角形的三边满足勾股定理;
3、用勾股定理解决一些实际问题。
勾股定理的教案篇5
教学目标
1.灵活应用勾股定理及逆定理解决实际问题。
2.进一步加深性质定理与判定定理之间关系的认识。
重难点
1.重点:灵活应用勾股定理及逆定理解决实际问题。
2.难点:灵活应用勾股定理及逆定理解决实际问题。
一、自主学习
1、若三角形的三边是 ⑴1、、2; ⑵; ⑶32,42,52⑷9,40,41;
⑸(m+n)2-1,2(m+n),(m+n)2+1;则构成的是直角三角形的有( )
a.2个 b.3个?????C.4个??????D.5个
2、已知:在△abc中,∠a、∠b、∠c的对边分别是a、b、c,分别为下列长度,判断该三角形是否是直角三角形?并指出那一个角是直角?
⑴a=9,b=41,c=40; ⑵a=15,b=16,c=6; ⑶a=2,b=,c=4;
二、交流展示
例1(p33例2)某港口p位于东西方向的海岸线上.“远航”号、“海天”号轮船同时离开港口,各自沿一固定方向航行,“远航”号每小时航行16海里,“海天”号每小时航行12海里,它们离开港口一个半小时后分别位于q、r处,并相距30海里. 如果知道“远航”号沿东北方向航行,能知道“海天”号沿哪个方向航行吗?
分析:⑴了解方位角,及方位名词;⑵依题意画出图形;⑶依题意可求pr,pq,qr;
⑷根据勾股定理 的逆定理,求∠qpr;⑸求∠rpn。
小结:让学生养成“已知三边求角,利用勾股定理的逆定理”的意识。
例2、一根30米长的细绳折成3段,围成一个三角形,其中一条边的长度比较短边长7米,比较长边短1米,请你试判断这个三角形的形状。
分析:⑴若判断三角形的形状,先求三角形的三边长;
⑵设未知数列方程,求出三角形的三边长;
⑶根据勾股定理的逆定理,判断三角形是否为直角三角形。
三、合作探究
例3.如图,小明的爸爸在鱼池边开了一块四边形土地种了一些蔬菜,爸爸让小明计算一下土地的面积,以便计算一下产量。小明找了一卷米尺,测得ab=4米,bc=3米,cd=13米,da=12米,又已知∠b=90°。
四、达标测试
1.一根24米绳子,折成三边为三个连续偶数的三角形,则三边长分别为,此三角形的形状为。
2.小强在操场上向东走80m后,又走了60m,再走100m回到原地。小强在操场上向东走了80m后,又走60m的方向是。
3.一根12米的电线杆ab,用铁丝ac、ad固定,现已知用去铁丝ac=15米,ad=13米,又测得地面上b、c两点之间距离是9米,b、d两点之间距离是5米,
则电线杆和地面是否垂直,为什么?
4.如图,在我国沿海有一艘不明国籍的轮船进入我国海域,我海军甲、乙两艘巡逻艇立即从相距13海里的a、b两个基地前去拦截,六分钟后同时到达c地将其拦截。已知甲巡逻艇每小时航行120海里,乙巡逻艇每小时航行50海里,航向为北偏西40°,问:甲巡逻艇的航向?
五、教学反思
勾股定理的教案篇6
[教学分析]
勾股定理是揭示三角形三条边数量关系的一条非常重要的性质,也是几何中最重要的定理之一。它是解直角三角形的主要依据之一,同时在实际生活中具有广泛的用途,“数学源于生活,又用于生活”正是这章书所体现的主要思想。教材在编写时注意培养学生的动手操作能力和分析问题的能力,通过实际操作,使学生获得较为直观的印象;通过联系比较、探索、归纳,帮助学生理解勾股定理,以利于进行正确的应用。
本节教科书从毕达哥拉斯观察地面发现勾股定理的传说谈起,让学生通过观察计算一些以直角三角形两条直角边为边长的小正方形的面积与以斜边为边长的正方形的面积的关系,发现两直角边为边长的小正方形的面积的和,等于以斜边为边长的正方形的面积,从而发现勾股定理,这时教科书以命题的形式呈现了勾股定理。关于勾股定理的证明方法有很多,教科书正文中介绍了我国古人赵爽的证法。之后,通过三个探究栏目,研究了勾股定理在解决实际问题和解决数学问题中的应用,使学生对勾股定理的作用有一定的认识。
[教学目标]
一、知识与技能
1、探索直角三角形三边关系,掌握勾股定理,发展几何思维。
2、应用勾股定理解决简单的实际问题
3学会简单的合情推理与数学说理
二、过程与方法
引入两段中西关于勾股定理的史料,激发同学们的兴趣,引发同学们的思考。通过动手操作探索与发现直角三角形三边关系,经历小组协作与讨论,进一步发展合作交流能力和数学表达能力,并感受勾股定理的应用知识。
三、情感与态度目标
通过对勾股定理历史的了解,感受数学文化,激发学习兴趣;在探究活动中,学生亲自动手对勾股定理进行探索与验证,培养学生的合作交流意识和探索精神,以及自主学习的能力。
四、重点与难点
1、探索和证明勾股定理
2、熟练运用勾股定理
[教学过程]
一、创设情景,揭示课题
1、教师展示图片并介绍第一情景
以中国最早的一部数学著作——《周髀算经》的开头为引,介绍周公向商高请教数学知识时的对话,为勾股定理的出现埋下伏笔。
周公问:“窃闻乎大夫善数也,请问古者包牺立周天历度.夫天不可阶而升,地不可得尺寸而度,请问数安从出?”商高答:“数之法出于圆方,圆出于方,方出于矩,矩出九九八十一,故折矩以为勾广三,股修四,径隅五。既方其外,半之一矩,环而共盘.得成三、四、五,两矩共长二十有五,是谓积矩。故禹之所以治天下者,此数之所由生也。”
2、教师展示图片并介绍第二情景
毕达哥拉斯是古希腊著名的数学家。相传在2500年以前,他在朋友家做客时,发现朋友家用地砖铺成的地面反映了直角三角形的某种特性。
二、师生协作,探究问题
1、现在请你也动手数一下格子,你能有什么发现吗?
2、等腰直角三角形是特殊的直角三角形,一般的直角三角形是否也有这样的特点呢?
3、你能得到什么结论吗?
三、得出命题
勾股定理:如果直角三角形的两直角边长分别为a、b,斜边长为c,那么,即直角三角形两直角边的平方和等于斜边的平方。解释:由于我国古代把直角三角形中较短的直角边称为勾,较长的边称为股,斜边称为弦,所以,把它叫做勾股定理。
四、勾股定理的证明
第一种方法:边长为 的正方形可以看作是由4个直角边分别为 、,斜边为 的直角三角形围在外面形成的。因为边长为 的正方形面积加上4个直角三角形的面积等于外围正方形的面积,所以可以列出等式 ,化简得 。
第二种方法:边长为 的正方形可以看作是由4个直角边分别为 、,斜边为 的
角三角形拼接形成的(虚线表示),不过中间缺出一个边长为 的正方形“小洞”。
因为边长为 的正方形面积等于4个直角三角形的面积加上正方形“小洞”的面积,所以可以列出等式 ,化简得 。
这种证明方法很简明,很直观,它表现了我国古代数学家赵爽高超的证题思想和对数学的钻研精神,是我们中华民族的骄傲。
五、应用举例,拓展训练,巩固反馈。
勾股定理的灵活运用勾股定理在实际的生产生活当中有着广泛的应用。勾股定理的发现和使用解决了许多生活中的问题,今天我们就来运用勾股定理解决一些问题,你可以吗?试一试。
例题:小明妈妈买了一部29英寸(74厘米)的电视机,小明量了电视机的屏幕后,发现屏幕只有58厘长和46厘米宽,他觉得一定是售货员搞错了,你同意他的想法吗?你能解释这是为什么吗?
六、归纳总结
1、内容总结:探索直角三角形两直角边的平方和等于斜边的平方,利于勾股定理,解决实际问题
2、方法归纳:数方格看图找关系,利用面积不变的方法。用直角三角形三边表示正方形的面积观察归纳注意画一个直角三角形表示正方形面积,再次验证自己的发现。
七、讨论交流
让学生发表自己的意见,提出他们模糊不清的概念,给他们一个梳理知识的机会,通过提示性的引导,让学生对勾股定理的概念豁然开朗,为后面勾股定理的应用打下基础。
我们班的同学很聪明。大家很快就通过数格子发现了勾股定理的规律。还有什么地方不懂的吗?跟大家一起来交流一下。请同学们课后在反思天地中都发表一下自己的学习心得。
勾股定理的教案篇7
一、学生知识状况分析
本节将利用勾股定理及其逆定理解决一些具体的实际问题,其中需要学生了解空间图形、对一些空间图形进行展开、折叠等活动。学生在学习七年级上第一章时对生活中的立体图形已经有了一定的认识,并从事过相应的实践活动,因而学生已经具备解决本课问题所需的知识基础和活动经验基础。
二、教学任务分析
本节是义务教育课程标准北师大版实验教科书八年级(上)第一章《勾股定理》第3节。具体内容是运用勾股定理及其逆定理解决简单的实际问题。当然,在这些具体问题的解决过程中,需要经历几何图形的抽象过程,需要借助观察、操作等实践活动,这些都有助于发展学生的分析问题、解决问题能力和应用意识;一些探究活动具体一定的难度,需要学生相互间的合作交流,有助于发展学生合作交流的能力。
三、本节课的教学目标是:
1、通过观察图形,探索图形间的关系,发展学生的空间观念。
2、在将实际问题抽象成数学问题的过程中,提高分析问题、解决问题的能力及渗透数学建模的思想。
3、在利用勾股定理解决实际问题的过程中,体验数学学习的实用性。
利用数学中的建模思想构造直角三角形,利用勾股定理及逆定理,解决实际问题是本节课的重点也是难点。
四、教法学法
1、教学方法
引导—探究—归纳
本节课的教学对象是初二学生,他们的参与意识教强,思维活跃,为了实现本节课的教学目标,我力求以下三个方面对学生进行引导:
(1)从创设问题情景入手,通过知识再现,孕育教学过程;
(2)从学生活动出发,顺势教学过程;
(3)利用探索研究手段,通过思维深入,领悟教学过程。
2、课前准备
教具:教材、电脑、多媒体课件。
学具:用矩形纸片做成的圆柱、剪刀、教材、笔记本、课堂练习本、文具。
五、教学过程分析
本节课设计了七个环节、第一环节:情境引入;第二环节:合作探究;第三环节:做一做;第四环节:小试牛刀;第五环节:举一反三;第六环节:交流小结;第七环节:布置作业。
1.3勾股定理的应用:课后练习
一、问题引入:
1、勾股定理:直角三角形两直角边的________等于________。如果用a,b和c表示直角三角形的两直角边和斜边,那么________。
2、勾股定理逆定理:如果三角形三边长a,b,c满足________,那么这个三角形是直角三角形。
1.3勾股定理的应用:同步检测
1、为迎接新年的到来,同学们做了许多拉花布置教室,准备召开新年晚会,小刘搬来一架高2.5米的木梯,准备把拉花挂到2.4米高的墙上,则梯脚与墙角距离应为( )
a、0.7米b、0.8米c、0.9米d、1.0米
2、小华和小刚兄弟两个同时从家去同一所学校上学,速度都是每分钟走50米、小华从家到学校走直线用了10分钟,而小刚从家出发先去找小明再到学校(均走直线),小刚到小明家用了6分钟,小明家到学校用了8分钟,小刚上学走了个( )
a、锐角弯b、钝角弯c、直角弯d、不能确定
3、如图,是一个圆柱形饮料罐,底面半径是5,高是12,上底面中心有一个小圆孔,则一条到达底部的直吸管在罐内部分a的长度(罐壁的厚度和小圆孔的大小忽略不计)范围是( )
a、5≤a≤12 b、5≤a≤13 c、12≤a≤13 d、12≤a≤15
4、一个木工师傅测量了一个等腰三角形木板的腰、底边和高的长,但他把这三个数据与其它的数据弄混了,请你帮助他找出来,是第( )组。
a、13,12,12 b、12,12,8 c、13,10,12 d、5,8,4
[教学分析]
勾股定理是揭示三角形三条边数量关系的一条非常重要的性质,也是几何中最重要的定理之一。它是解直角三角形的主要依据之一,同时在实际生活中具有广泛的用途,“数学源于生活,又用于生活”正是这章书所体现的主要思想。教材在编写时注意培养学生的动手操作能力和分析问题的能力,通过实际操作,使学生获得较为直观的印象;通过联系比较、探索、归纳,帮助学生理解勾股定理,以利于进行正确的应用。
本节教科书从毕达哥拉斯观察地面发现勾股定理的传说谈起,让学生通过观察计算一些以直角三角形两条直角边为边长的小正方形的面积与以斜边为边长的正方形的面积的关系,发现两直角边为边长的小正方形的面积的和,等于以斜边为边长的正方形的面积,从而发现勾股定理,这时教科书以命题的形式呈现了勾股定理。关于勾股定理的证明方法有很多,教科书正文中介绍了我国古人赵爽的证法。之后,通过三个探究栏目,研究了勾股定理在解决实际问题和解决数学问题中的应用,使学生对勾股定理的作用有一定的认识。
[教学目标]
一、 知识与技能
1、探索直角三角形三边关系,掌握勾股定理,发展几何思维。
2、应用勾股定理解决简单的实际问题
3学会简单的合情推理与数学说理
二、 过程与方法
引入两段中西关于勾股定理的史料,激发同学们的兴趣,引发同学们的思考。通过动手操作探索与发现直角三角形三边关系,经历小组协作与讨论,进一步发展合作交流能力和数学表达能力,并感受勾股定理的应用知识。
三、 情感与态度目标
通过对勾股定理历史的了解,感受数学文化,激发学习兴趣;在探究活动中,学生亲自动手对勾股定理进行探索与验证,培养学生的合作交流意识和探索精神,以及自主学习的能力。
四、 重点与难点
1、探索和证明勾股定理
2熟练运用勾股定理
[教学过程]
一、创设情景,揭示课题
1、教师展示图片并介绍第一情景
以中国最早的一部数学著作——《周髀算经》的开头为引,介绍周公向商高请教数学知识时的对话,为勾股定理的出现埋下伏笔。
周公问:“窃闻乎大夫善数也,请问古者包牺立周天历度。夫天不可阶而升,地不可得尺寸而度,请问数安从出?”商高答:“数之法出于圆方,圆出于方,方出于矩,矩出九九八十一,故折矩以为勾广三,股修四,径隅五。既方其外,半之一矩,环而共盘。得成三、四、五,两矩共长二十有五,是谓积矩。故禹之所以治天下者,此数之所由生也。”
2、教师展示图片并介绍第二情景
毕达哥拉斯是古希腊著名的数学家。相传在2500年以前,他在朋友家做客时,发现朋友家用地砖铺成的地面反映了直角三角形的某种特性。
二、师生协作,探究问题
1、现在请你也动手数一下格子,你能有什么发现吗?
2、等腰直角三角形是特殊的直角三角形,一般的直角三角形是否也有这样的特点呢?
3、你能得到什么结论吗?
三、得出命题
勾股定理:如果直角三角形的两直角边长分别为a、b,斜边长为c,那么,即直角三角形两直角边的平方和等于斜边的平方。解释: 由于我国古代把直角三角形中较短的直角边称为勾,较长的边称为股,斜边称为弦,所以,把它叫做勾股定理。
四、勾股定理的证明
赵爽弦图的证法(图2)
第一种方法:边长为 的正方形可以看作是由4个直角边分别为 、 ,斜边为 的直角三角形围在外面形成的。因为边长为 的正方形面积加上4个直角三角形的面积等于外围正方形的面积,所以可以列出等式 ,化简得 。
第二种方法:边长为 的正方形可以看作是由4个直角边分别为 、 ,斜边为 的
角三角形拼接形成的(虚线表示),不过中间缺出一个边长为 的正方形“小洞”。
因为边长为 的正方形面积等于4个直角三角形的面积加上正方形“小洞”的面积,所以可以列出等式 ,化简得 。
这种证明方法很简明,很直观,它表现了我国古代数学家赵爽高超的证题思想和对数学的钻研精神,是我们中华民族的骄傲。
五、应用举例,拓展训练,巩固反馈。
勾股定理的灵活运用勾股定理在实际的生产生活当中有着广泛的应用。勾股定理的发现和使用解决了许多生活中的问题,今天我们就来运用勾股定理解决一些问题,你可以吗?试一试。
例题:小明妈妈买了一部29英寸(74厘米)的电视机,小明量了电视机的屏幕后,发现屏幕只有58厘长和46厘米宽,他觉得一定是售货员搞错了,你同意他的想法吗?你能解释这是为什么吗?
六、归纳总结
1、内容总结:探索直角三角形两直角边的平方和等于斜边的平方,利于勾股定理,解决实际问题
2、方法归纳:数方格看图找关系,利用面积不变的方法。用直角三角形三边表示正方形的面积观察归纳注意画一个直角三角形表示正方形面积,再次验证自己的发现。
七、讨论交流
让学生发表自己的意见,提出他们模糊不清的概念,给他们一个梳理知识的机会,通过提示性的引导,让学生对勾股定理的概念豁然开朗,为后面勾股定理的应用打下基础。
我们班的同学很聪明。大家很快就通过数格子发现了勾股定理的规律。还有什么地方不懂的吗?跟大家一起来交流一下。请同学们课后在反思天地中都发表一下自己的学习心得。
教学目标:
一知识技能
1、理解勾股定理的逆定理的证 chayi5.com 明方法和证明过程;
2、掌握勾股定理的逆定理,并能利用勾股定理的逆定理判定一个三角形是直角三角形;
二数学思考
1、通过勾股定理的逆定理的探索,经历知识的发生发展与形成的过程;
2、通过三角形三边的数量关系来判断三角形的形状,体验数形结合法的应用。
三解决问题
通过勾股定理的逆定理的证明及其应用,体会数形结合法在问题解决中的作用,并能运用勾股定理的逆定理解决相关问题。
四情感态度
1、通过三角形三边的数量关系来判断三角形的形状,体验数与形的内在联系,感受定理与逆定理之间的和谐及辩证统一关系;
2、在探究勾股定理的逆定理的证明及应用的活动中,通过一系列富有探究性的问题,渗透与他人交流合作的意识和探究精神。
教学重难点:
一重点:勾股定理的逆定理及其应用。
二难点:勾股定理的逆定理的证明。
教学方法
启发引导分组讨论合作交流等。
教学媒体
多媒体课件演示。
教学过程:
一复习孕新,引入课题
问题:
(1) 勾股定理的内容是什么?
(2) 求以线段ab为直角边的直角三角形的斜边c的长:
① a=3,b=4
② a=2.5,b=6
③ a=4,b=7.5
(3) 分别以上述abc为边的三角形的形状会是什么样的呢?
二动手实践,检验推测
1、把准备好的一根打了13个等距离结的绳子,按3个结4个结5个结的长度为边摆放成一个三角形,请观察并说出此三角形的形状?
学生分组活动,动手操作,并在组内进行交流讨论的基础上,作出实践性预测。
教师深入小组参与活动,并帮助指导部分学生完成任务,得出勾股定理的逆命题。在此基础上,介绍:古埃及和我国古代大禹治水都是用这种方法来确定直角的。
2、分别以2.5cm6cm6.5cm和4cm7.5cm8.5cm为三边画出两个三角形,请观察并说出此三角形的形状?
3、结合三角形三边长度的平方关系,你能猜一猜三角形的三边长度与三角形的形状之间有怎样的关系吗?
三探索归纳,证明猜想
问题
1、三边长度分别为3 cm4 cm5 cm的三角形与以3 cm4 cm为直角边的直角三角形之间有什么关系?你是怎样得到的?
2、你能证明以2.5cm6cm6.5cm和4cm7.5cm8.5cm为三边长的三角形是直角三角形吗?
3、如图18.2-2,若△abc的三边长
满足
,试证明△abc是直角三角形,请简要地写出证明过程。
教师提出问题,并适时诱导,指导学生完成问题3的证明。之后,归纳得出勾股定理的逆定理。
四尝试运用,熟悉定理
问题
1例1:判断由线段
组成的三角形是不是直角三角形:
(1)
(2)
2三角形的两边长分别为3和4,要使这个三角形是直角三角形,则第三条边长是多少?
教师巡视,了解学生对知识的掌握情况。
特别关注学生在练习中反映出的问题,有针对性地讲解,学生能否熟练地应用勾股定理的逆定理去分析和解决问题
五类比模仿,巩固新知
1、练习:练习题13.
2、思考:习题18.2第5题。
部分学生演板,剩余学生在课堂练习本上独立完成。
小结梳理,内化新知
六1、小结:教师引导学生回忆本节课所学的知识。
2、作业:
(1)必做题:习题18.2第1题(2)(4)和第3题;
(2)选做题:习题18.2第46题。
勾股定理的教案篇8
一、回顾交流,合作学习
【活动方略】
活动设计:教师先将学生分成四人小组,交流各自的小结,并结合课本p87的小结进行反思,教师巡视,并且不断引导学生进入复习轨道.然后进行小组汇报,汇报时可借助投影仪,要求学生上台汇报,最后教师归纳.
【问题探究1】(投影显示)
飞机在空中水平飞行,某一时刻刚好飞到小明头顶正上方4000米处,过了20秒,飞机距离小明头顶5000米,问:飞机飞行了多少千米?
思路点拨:根据题意,可以先画出符合题意的图形,如右图,图中△abc中的∠c=90°,ac=4000米,ab=5000米,要求出飞机这时飞行多少千米,就要知道飞机在20秒时间里飞行的路程,也就是图中的bc长,在这个问题中,斜边和一直角边是已知的,这样,我们可以根据勾股定理来计算出bc的长.(3000千米)
【活动方略】
教师活动:操作投影仪,引导学生解决问题,请两位学生上台演示,然后讲评.
学生活动:独立完成“问题探究1”,然后踊跃举手,上台演示或与同伴交流.
【问题探究2】(投影显示)
一个零件的形状如右图,按规定这个零件中∠a与∠bdc都应为直角,工人师傅量得零件各边尺寸:ad=4,ab=3,db=5,dc=12,bc=13,请你判断这个零件符合要求吗?为什么?
思路点拨:要检验这个零件是否符合要求,只要判断△adb和△dba是否为直角三角形,这样可以通过勾股定理的逆定理予以解决:
ab2+ad2=32+42=9+16=25=bd2,得∠a=90°,同理可得∠cdb=90°,因此,这个零件符合要求.
【活动方略】
教师活动:操作投影仪,关注学生的思维,请两位学生上讲台演示之后再评讲.
学生活动:思考后,完成“问题探究2”,小结方法.
解:在△abc中,ab2+ad2=32+42=9+16=25=bd2,
∴△abd为直角三角形,∠a=90°.
在△bdc中,bd2+dc2=52+122=25+144=169=132=bc2.
∴△bdc是直角三角形,∠cdb=90°
因此这个零件符合要求.
【问题探究3】
甲、乙两位探险者在沙漠进行探险,某日早晨8:00甲先出发,他以6千米/时的速度向东行走,1小时后乙出发,他以5千米/时的速度向北行进,上午10:00,甲、乙两人相距多远?
思路点拨:要求甲、乙两人的距离,就要确定甲、乙两人在平面的位置关系,由于甲往东、乙往北,所以甲所走的路线与乙所走的路线互相垂直,然后求出甲、乙走的路程,利用勾股定理,即可求出甲、乙两人的距离.(13千米)
【活动方略】
教师活动:操作投影仪,巡视、关注学生训练,并请两位学生上讲台“板演”.
学生活动:课堂练习,与同伴交流或举手争取上台演示
勾股定理的教案8篇相关文章:
★ 种树歌的教案8篇